
 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 1

IQRF

DPA Framework

Technical Guide

Version v4.30

IQRF OS v4.06D+/4.06G

19. 10. 2022

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 2

Table of Contents

1 Introduction ... 9
2 Basics ... 9

2.1 Device types .. 9
2.2 RF Devices and Networks ... 9

2.2.1 Migration Notes from DPA 3.0x to DPA 4.xx ... 10
2.3 Interfaces ... 10

2.3.1 SPI ... 10
2.3.2 UART ... 10
2.3.3 Peripherals vs. Interfaces .. 12
2.3.3.1 Peripherals ... 12
2.3.3.2 Interface ... 12

2.4 DPA Plug-in filename .. 13
2.5 Message parameters ... 14
2.6 DPA Messages .. 14

2.6.1 DPA Request ... 15
2.6.2 DPA Confirmation .. 15
2.6.3 DPA Notification... 17
2.6.4 DPA Response .. 18
2.6.5 Examples ... 18

2.7 Device exploration ... 19
2.7.1 Peripheral enumeration ... 19
2.7.1.1 Source code support ... 20
2.7.2 Get peripheral information ... 20
2.7.2.1 Source code support ... 21
2.7.3 Get information for more peripherals ... 21
2.7.3.1 Source code support ... 21

3 Peripherals ... 22
3.1 Standard operations in general ... 22

3.1.1 Writing to peripheral .. 22
3.1.1.1 Source code support ... 22
3.1.2 Reading from peripheral .. 22
3.1.2.1 Source code support ... 23

3.2 Coordinator .. 23
3.2.1 Peripheral information ... 23
3.2.2 Get addressing information ... 23
3.2.2.1 Source code support ... 23
3.2.3 Get discovered Nodes ... 23
3.2.4 Get bonded Nodes .. 24
3.2.4.1 Source code support ... 24
3.2.5 Clear all bonds ... 24
3.2.6 Bond Node ... 24
3.2.6.1 Source code support ... 25
3.2.7 Remove bonded Node ... 25
3.2.7.1 Source code support ... 25
3.2.8 Discovery ... 26
3.2.8.1 Source code support ... 26
3.2.9 Set DPA Param ... 27
3.2.9.1 Source code support ... 27
3.2.10 Set Hops .. 27
3.2.10.1 Source code support ... 28
3.2.11 Backup ... 28
3.2.11.1 Source code support ... 28
3.2.12 Restore .. 29
3.2.12.1 Source code support ... 29
3.2.13 Authorize bond... 29
3.2.13.1 Source code support ... 30
3.2.14 Smart Connect ... 30
3.2.14.1 Source code support ... 31
3.2.15 Set MID .. 31

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 3

3.2.15.1 Source code support ... 32
3.3 Node .. 32

3.3.1 Peripheral information ... 32
3.3.2 Read .. 32
3.3.2.1 Source code support ... 33
3.3.3 Remove bond .. 33
3.3.4 Backup ... 33
3.3.5 Restore .. 33
3.3.6 Validate bonds ... 33
3.3.6.1 Source code support ... 34

3.4 OS .. 34
3.4.1 Peripheral information ... 34
3.4.2 Read .. 34
3.4.2.1 Source code support ... 35
3.4.3 Reset ... 35
3.4.4 Restart ... 35
3.4.5 Read TR Configuration .. 36
3.4.5.1 Source code support ... 36
3.4.6 Write TR Configuration .. 36
3.4.6.1 Source code support ... 37
3.4.7 Write TR Configuration byte .. 37
3.4.7.1 Source code support ... 38
3.4.8 Run RFPGM .. 38
3.4.9 Sleep .. 38
3.4.9.1 Source code support ... 40
3.4.10 Set Security ... 40
3.4.10.1 Source code support ... 40
3.4.11 Batch .. 40
3.4.12 Selective Batch .. 41
3.4.12.1 Source code support ... 41
3.4.13 LoadCode .. 41
3.4.13.1 Source code support ... 43
3.4.14 Test RF Signal ... 43
3.4.14.1 Source code support ... 44
3.4.15 Factory Settings ... 44
3.4.16 Indicate .. 44
3.4.16.1 Source code support ... 45

3.5 EEPROM ... 45
3.5.1 Peripheral information ... 45
3.5.2 Read .. 45
3.5.2.1 Source code support ... 46
3.5.3 Write .. 46
3.5.3.1 Source code support ... 46

3.6 EEEPROM ... 47
3.6.1 Peripheral information ... 47
3.6.2 Extended Read .. 47
3.6.2.1 Source code support ... 47
3.6.3 Extended Write .. 48
3.6.3.1 Source code support ... 48

3.7 RAM ... 48
3.7.1 Peripheral information ... 48
3.7.2 Read & Write ... 48
3.7.2.1 Source code support ... 48
3.7.3 Read Any ... 49

3.8 SPI (Slave) ... 49
3.9 LED .. 49

3.9.1 Peripheral information ... 49
3.9.2 Set ... 49
3.9.3 Pulse .. 49
3.9.4 Flashing ... 49

3.10 IO ... 50

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 4

3.10.1 Peripheral information ... 50
3.10.2 Direction ... 50
3.10.2.1 Source code support ... 50
3.10.3 Set ... 51
3.10.3.1 Source code support ... 52
3.10.4 Get ... 52

3.11 Thermometer ... 52
3.11.1 Peripheral information ... 52
3.11.2 Read .. 52
3.11.2.1 Source code support ... 53

3.12 PWM .. 53
3.13 UART ... 53

3.13.1 Peripheral information ... 53
3.13.2 Open .. 54
3.13.2.1 Source code support ... 54
3.13.3 Close .. 54
3.13.4 Write & Read ... 55
3.13.4.1 Source code support ... 55
3.13.5 Clear & Write & Read .. 56

3.14 FRC ... 56
3.14.1 Peripheral information ... 56
3.14.2 Send .. 56
3.14.2.1 Source code support ... 57
3.14.3 Extra result ... 57
3.14.4 Send Selective ... 57
3.14.4.1 Source code support ... 58
3.14.5 Set FRC Params.. 58
3.14.5.1 Source code support ... 59
3.14.6 Embedded FRC Commands ... 59
3.14.6.1 Ping .. 59
3.14.6.2 Acknowledged broadcast - bits .. 59
3.14.6.3 Prebonded alive ... 60
3.14.6.4 Supply voltage ... 60
3.14.6.5 Prebonded memory compare .. 60
3.14.6.6 Temperature .. 61
3.14.6.7 Acknowledged broadcast - bytes ... 61
3.14.6.8 Memory read .. 61
3.14.6.9 Memory read plus 1 ... 62
3.14.6.10 FRC response time .. 63
3.14.6.11 Test RF Signal ... 63
3.14.6.12 Prebonded memory read plus 1 .. 64
3.14.6.13 Memory read 4 bytes ... 64

4 TR Configuration .. 65
5 Device Startup .. 67

5.1 Button Handling and LED Indications .. 68
5.1.1 RFPGM .. 68
5.1.2 Node .. 69
5.1.2.1 Bonded Node ... 69
5.1.2.2 Unbonded Node... 69
5.1.3 Coordinator .. 70
5.1.4 Custom DPA Handler State ... 70

6 DPA Menu .. 71
6.1 Menus .. 71

6.1.1 DPA Menu ReadyToBond ... 72
6.1.2 DPA Menu Online .. 72
6.1.3 DPA Menu Beaming .. 72
6.1.4 DPA Menu Standby ... 72

6.2 DPA Menu Content .. 72
6.2.1 Bond Request .. 73
6.2.2 Beaming ... 73
6.2.3 Connectivity Check .. 73

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 5

6.2.4 Exit Standby ... 73
6.2.5 State Indication .. 73
6.2.6 User1 and User2.. 73
6.2.7 Standby .. 73
6.2.8 Reset ... 73
6.2.9 Unbond + Restart .. 73
6.2.10 Unbond + Factory Settings + Restart .. 73

7 Autoexec .. 74
8 IO Setup ... 74
9 Custom DPA Handler ... 75

9.1 Handler Example ... 76
9.2 Events Flow ... 77

9.2.1 Coordinator .. 77
9.2.2 Node .. 78
9.2.3 General events .. 79
9.2.3.1 Interrupt ... 79
9.2.3.2 Disable Interrupts... 79
9.2.3.3 Sleep Events .. 79
9.2.3.4 Menu Events .. 79

9.3 Events .. 79
9.3.1 Interrupt ... 79
9.3.2 Idle ... 80
9.3.3 Init .. 81
9.3.4 Notification ... 81
9.3.5 AfterRouting ... 82
9.3.6 BeforeSleep ... 82
9.3.7 AfterSleep .. 82
9.3.8 Reset ... 82
9.3.9 Disable Interrupts... 83
9.3.10 FrcValue .. 83
9.3.11 FrcResponseTime ... 84
9.3.12 ReceiveDpaResponse ... 85
9.3.13 IFaceReceive ... 85
9.3.14 ReceiveDpaRequest .. 86
9.3.15 BeforeSendingDpaResponse .. 86
9.3.16 PeerToPeer ... 87
9.3.17 UserDpaValue ... 88
9.3.18 BondingButton ... 88
9.3.19 Indicate .. 88
9.3.20 VerifyLocalFrc .. 88
9.3.21 MenuActivated ... 89
9.3.22 MenuItemSelected ... 89
9.3.23 MenuItemFinalize .. 90
9.3.24 DPA Request ... 90
9.3.24.1 Enumerate Peripherals .. 90
9.3.24.2 Get Peripheral Info .. 91
9.3.24.3 Handle Peripheral Request ... 91
9.3.24.4 Alternative Event Processing ... 92

9.4 DPA API ... 92
9.4.1 DpaApiRfTxDpaPacket .. 92
9.4.2 DpaApiReadConfigByte ... 93
9.4.3 DpaApiSendToIFaceMaster .. 94
9.4.4 DpaApiRfTxDpaPacketCoordinator ... 94
9.4.5 DpaApiLocalRequest ... 95
9.4.6 DpaApiReturnPeripheralError .. 95
9.4.7 DpaApiSetRfDefaults ... 96
9.4.8 DpaApiLocalFrc ... 96
9.4.9 DpaApiCrc8 ... 96
9.4.1 DpaApiAggregateFrc ... 96
9.4.2 DpaApiSetOTK .. 97
9.4.3 DpaApiSleep .. 97

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 6

9.4.4 DpaApiAfterSleep .. 97
9.4.5 DpaApiI2Cinit ... 97
9.4.6 DpaApiI2Cstart .. 98
9.4.7 DpaApiI2Cwrite .. 98
9.4.8 DpaApiI2Cread .. 98
9.4.9 DpaApiI2Cstop... 98
9.4.10 DpaApiI2CwaitForACK .. 98
9.4.11 DpaApiI2Cshutdown .. 98
9.4.12 DpaApiI2CwaitForIdle .. 98
9.4.13 DpaApiRandom ... 99
9.4.14 DpaApiMenu .. 99
9.4.15 DpaApiMenuIndicateResult ... 100
9.4.16 DpaApiMenuExecute ... 100

9.5 DPA API Variables .. 100
9.5.1 bit IFaceMasterNotConnected ... 100
9.5.2 bit NodeWasBonded .. 101
9.5.3 bit EnableIFaceNotificationOnRead .. 101
9.5.4 uns16 DpaTicks ... 101
9.5.5 uns8 LPtoutRF ... 101
9.5.6 uns8 ResetType... 101
9.5.7 bit DSMactivated.. 101
9.5.8 uns8 UserDpaValue .. 101
9.5.9 uns8 NetDepth ... 102
9.5.10 bit LpRxPinTerminate .. 102
9.5.11 uns8 RxFilter .. 102
9.5.12 uns16 BondingSleepCountdown ... 102
9.5.13 uns16 Random .. 103
9.5.14 bit AsyncReqAtCoordinator ... 103
9.5.15 bit NonroutedRfTxDpaPacket .. 103
9.5.16 uns8 DpaValue .. 103
9.5.17 uns8 I2Ctimeout... 103
9.5.18 bit I2CwasTimeout ... 103
9.5.19 bit FirstDpaApiSleep .. 103

9.6 Examples ... 103
9.6.1 Bonding .. 104
9.6.2 Coordinator-FRCandSleep .. 104
9.6.3 FRC-Minimalistic.. 105
9.6.4 LED-MemoryMapping .. 105
9.6.5 PeripheralMemoryMapping ... 105
9.6.6 UserPeripheral-18B20 ... 106
9.6.7 UserPeripheral-18B20-Idle .. 106
9.6.8 UserPeripheral-ADC .. 106
9.6.9 UserPeripheral-HW-UART .. 106
9.6.10 UserPeripheral-i2c ... 106
9.6.11 UserPeripheral-PWM ... 106
9.6.12 UserPeripheral-SPImaster ... 106

9.7 Migration Notes to DPA 3.03 ... 107
10 DPA Peer-to-Peer .. 108

10.1 DP2P Request ... 108
10.2 DP2P Response Handshake ... 109

10.2.1 DP2P Invite .. 110
10.2.2 DP2P Confirm .. 110
10.2.3 DP2P Response .. 110

11 DPA in Practice ... 111
11.1 Network Deployment ... 111
11.2 Over The Air (OTA) upgrade of IQRF OS and DPA .. 111
11.3 Code Upload .. 113

11.3.1 Storing Code at External EEPROM ... 113
11.3.2 Executing Code Upload ... 113
11.3.3 Executing IQRF OS Change ... 113

12 Constants ... 115

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 7

12.1 Peripheral Numbers ... 115
12.2 Response Codes ... 115
12.3 DPA Commands .. 115
12.4 Peripheral Types ... 116
12.5 Custom DPA Handler Events .. 117
12.6 Extended Peripheral Characteristic ... 117
12.7 HW Profile IDs ... 117
12.8 Baud rates ... 117
12.9 User FRC Codes ... 118

13 Appendix .. 119
13.1 CRC Calculation .. 119

13.1.1 CC5X Compiler .. 119
13.1.2 C# .. 119
13.1.3 Java ... 119
13.1.4 Pascal/Delphi ... 120

13.2 One’s Complement Fletcher-16 Checksum Calculation ... 120
13.2.1 CC5X Compiler .. 120
13.2.2 C# .. 120

13.3 Custom DPA Handler Code at .hex File .. 121
13.4 IQRF OS Change .. 122

13.4.1 IQRF OS Change File ... 123
13.5 Code Optimization ... 124

13.5.1 W as a temporary variable ... 124
13.5.2 Variable access reorder ... 124
13.5.3 Variable access decomposition ... 124
13.5.4 Explicit MOVLB omitting .. 124
13.5.5 Direct function parameter usage ... 124
13.5.6 Avoiding else ... 125
13.5.7 Switch instead of if ... 125
13.5.8 Function call before return ... 125
13.5.9 Using goto to avoid redundant code .. 126
13.5.10 Avoiding readFromRAM and getINDFx ... 126
13.5.11 Advanced C-compiler optimized instructions .. 126
13.5.12 do {} while () is preferred ... 126
13.5.13 Use DECFSZ/INCFSZ ... 127
13.5.14 Widening function parameter ... 127
13.5.15 Carry as a variable... 127
13.5.16 Limiting variable scope .. 128
13.5.17 Using IQRF variables .. 128
13.5.18 Parameter mapped to W ... 128
13.5.19 Pointer parameters mapped to FSRx .. 129
13.5.20 FSRx as a 16-bit variable .. 129
13.5.21 Using FSRx to copy between buffers and variables.. 129
13.5.22 Accessing 16-bit MCU registers .. 129
13.5.23 Using IQRF OS offset and limit variables .. 130
13.5.24 Effective is not always efficient .. 130
13.5.25 The assignment also has a value .. 130
13.5.26 Interval detection optimization ... 130
13.5.27 Optimized constants .. 130
13.5.28 Equality result .. 131
13.5.29 One instruction at the if branch .. 131
13.5.30 Utilization of the preloaded W .. 131
13.5.31 == 1 is more efficient than != 1 .. 131
13.5.32 == 0xFF is more efficient than != 0xFF .. 132
13.5.33 Expression modification ... 132
13.5.34 Computed goto with a table limit ... 132
13.5.35 Default is first at switch .. 132
13.5.36 Better to return from than after the loop .. 133
13.5.37 Modification instead of storing the value ... 133
13.5.38 Assignment compares to 0 .. 134
13.5.39 End condition of the 16-bit loop variable ... 134

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 8

13.5.40 Shift for a smart comparison .. 134
13.5.41 Optimized return TRUE/FALSE ... 134
13.5.42 Avoiding MOVLP #1 .. 135
13.5.43 Avoiding MOVLP #2 .. 135
13.5.44 Setting zeroed variables .. 135
13.5.45 Compare to zero is more efficient.. 135
13.5.46 setFSR01 ... 135
13.5.47 Pointer arithmetic ... 136
13.5.48 Circular buffer index increment .. 136

14 DPA Release Notes ... 137
14.1 DPA 4.30 ... 137
14.2 DPA 4.18 ... 137
14.3 DPA 4.17 ... 137
14.4 DPA 4.16 ... 138
14.5 DPA 4.15 ... 138
14.6 DPA 4.14 ... 139
14.7 DPA 4.13 ... 139
14.8 DPA 4.12 ... 139
14.9 DPA 4.11 ... 139
14.10 DPA 4.10 ... 140
14.11 DPA 4.03 ... 140
14.12 DPA 4.02 ... 140
14.13 DPA 4.01 ... 140
14.14 DPA 4.00 ... 140
14.15 DPA 3.04 ... 141
14.16 DPA 3.03 ... 141
14.17 DPA 3.02 ... 142
14.18 DPA 3.01 ... 142
14.19 DPA 3.00 ... 143
14.20 DPA 2.28 ... 144
14.21 DPA 2.27 ... 144
14.22 DPA 2.26 ... 144
14.23 DPA 2.24 ... 145
14.24 DPA 2.23 ... 145
14.25 DPA 2.22 ... 145
14.26 DPA 2.21 ... 145
14.27 DPA 2.20 ... 146
14.28 DPA 2.13 ... 146
14.29 DPA 2.12 ... 146
14.30 DPA 2.11 ... 146
14.31 DPA 2.10 ... 147
14.32 DPA 2.01 ... 148
14.33 DPA 2.00 ... 148

15 Document Revisions .. 149
16 Acknowledgement ... 149
17 Sales and Service .. 150

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 9

 1 Introduction

Direct Peripheral Access (DPA) protocol is a simple byte-oriented protocol used to control services and
peripherals of IQMESH network devices (Coordinator and Nodes) by SPI or UART interfaces. DPA
protocol implementation is distributed in the form of the IQRF plug-in.

 2 Basics

DPA protocol uses byte structured messages to communicate at the IQMESH network. Every message
always contains four mandatory parameters NADR, PNUM, PCMD, and HWPID (foursome from now).
The message can optionally hold data (an array of bytes often referred to as PData throughout the
document) to be transmitted or received. They are always described next to the foursome throughout
this document. Although foursome parameters are typically described next to each other in this
document, they do not have to be stored at consecutive memory addresses in the real scenario. The
same rule does not apply to the message data.

Please note that a Response, Confirmation, and Notification (with a small exception) DPA messages
always contain the same NADR, PNUM, and PCMD as the original DPA Request message except the
response message is flagged by the most significant bit of PCMD.

All values wider than one byte are encoded using little-endian style unless otherwise specified.

Symbols, variables, structures, methods, etc. mentioned in this document are defined in header files
DPA.h and DPAcustomHandler.h. Please consult IQRF OS documentation whenever an IQRF OS

function is referenced in this document.

 2.1 Device types

Two device types are depending on what type of network device it implements. For each device type,
there are dedicated DPA plug-ins to upload.

[C] IQMESH Coordinator device
[N] IQMESH Node device ([Ns] stands for Nodes)

 2.2 RF Devices and Networks

There are two types of network devices from RF and the power consumption point of view. STD devices
support both STD+LP and STD networks (see below). LP devices support only STD+LP networks. LP
devices, unlike STD devices, receive packets strictly at LP-RX mode, so they have considerably lower
power consumption compared to STD devices and therefore they can be powered from batteries,
accumulators, etc.

There are two IQMESH network types: either STD+LP or STD.

If the network is type STD, then the packets are transmitted in STD-TX mode and they can only be
received in STD-RX mode. It follows that such a network consists typically only of mains-powered
devices as the STD-RX mode would drain batteries or accumulators fast.

If the network is type STD+LP, then the packets are transmitted in LP-TX mode. STD+LP networks are
approximately twice as slow compared to the STD networks. Battery-powered devices (LP [N]) receive
the LP packets in LP-RX mode (that puts the device regularly into sleep mode for most of the time) to
minimize their energy consumption. By contrast, the mains-powered devices (STD [N]) keep receiving
the LP packets in STD-RX mode thus they can unlike battery-powered devices take advantage of using
interrupts and peripherals.

Mains-powered devices (STD [N]), unlike battery-powered devices (LP [N]), can work both in STD and
STD+LP networks.

https://doc.iqrf.org/IQMESH-Network-deployment/
https://doc.iqrf.org/DpaTechGuide/430/examples/DPA.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPAcustomHandler.h.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=moduleinfo.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 10

The IQMESH network type (STD+LP or STD), that [C] controls, is configured by a TR Configuration bit.7
at byte index 0x05 (NtwType from now) of the respective device.

The following table depicts network RF modes and the respective [C] and [N] RF settings that are
automatically set by DPA:

Network Coordinator Node

ST D LP

STD NtwType = 0 STD-TX / STD-RX STD-TX / STD-RX n/a

STD+LP NtwType = 1 LP-TX / STD-RX LP-TX / STD-RX LP-TX / LP-RX

 2.2.1 Migration Notes from DPA 3.0x to DPA 4.xx

It is important to prepare existing devices before the migration to the DPA 4.xx from DPA 3.0x.

• The [C] that will control the STD+LP network must have NtwType correctly bit set before the
DPA is migrated if the OTA is not used.

• Some mains-powered devices running with a former DPA version at LP network had to have a
special Custom DPA handler just for LP networks in the past. With DPA 4.xx they can have a
former STD Custom DPA Handler that will be compatible with both network types. Please
consult your device manufacturer with a proper Custom DPA handler to upload.

• Already bonded STD [N] that can run both in STD+LP and STD networks must be upgraded to
the DPA 4.xx using OTA only. OTA process ensures that the STD [N] will be properly set up for
the future STD+LP or STD network. If the DPA is updated by uploading the DPA plug-in, then
it is not possible to find out whether the network the STD [N] is bonded to is STD+LP or STD
(the network RF mode can be found out only during bonding or OTA) thus the STD [N] will not
work at the new DPA 4.xx network.

 2.3 Interfaces

The interface type is chosen by uploading the proper PDA plug-in. The interface transfers the DPA
message to/from the connected device. The message consists of the successively stored foursome and
optional data. When an interface is supported then UART embedded peripheral is not implemented. The
interface is not available for LP [N] as it regularly sleeps.

 2.3.1 SPI

The SPI interface is implemented using the IQRF SPI protocol described in the document "SPI
Implementation in IQRF TR modules". The document specifies how to set up the SPI master and the
communication over the SPI. The device always plays the role of SPI slave and the externally connected
device is the SPI master. The DPA protocol corresponds to the DM and DS bytes of the IQRF SPI
protocol.

 2.3.2 UART

UART is configured with 8 data bits, 1 stop bit, and no parity bit. UART baud rate is specified at TR
Configuration. The size of both RX and TX buffers is 64 bytes.

HDLC byte stuffing protocol is used to frame, protect, and encode DPA messages. Every data frame
(DPA message) starts and ends with byte 0x7e (Flag Sequence). When the actual data byte (applies to
8-bit CRC value too) equals 0x7e (Flag Sequence) or 0x7d (Control Escape) then it is replaced by two
bytes: the 1st byte is 0x7d (Control Escape) and the 2nd byte equals the original byte value XORed by
0x20 (Escape Bit).

An 8-bit CRC is used to protect data. The CRC value is appended after all data bytes and it is coded by
the same HDLC byte stuffing algorithm. CRC is compatible with 1-Wire CRC with an initial value of
0xFF, the polynomial is x8+x5+x4+1. See CRC Calculation for the implementations of the CRC algorithm.
There is also an online calculator available.

Please note that the UART interface is not able to inform that the device is ready to receive the next
DPA request. It is recommended to implement timing accurately. If the duration of the request cannot

https://www.iqrf.org/weben/downloads.php?id=85
https://www.iqrf.org/weben/downloads.php?id=85
https://www.iqrf.org/support/HDLCcalculator

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 11

be estimated (e.g. Discovery), a simple DPA request Get addressing information can be sent periodically
to determine if the current request is still being executed.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 12

Example

The example shows encoded DPA Request “write bytes 0x7E, 0x7D at the RAM address 0 at [N] with
address 0x2F”:

NADR=0x002F(Node address), PNUM=0x05(RAM peripheral), PCMD=0x01(RAM write), HWPID=0xFFFF,
PData={0x00}(address), {0x7E,0x7D}(bytes to write)

CRC from bytes {0x2f, 0x00, 0x05, 0x01, 0xff, 0xff, 0x00, 0x7e, 0x7d} = 0x7e

Data in
index

0 1 2 3 4 5 6 7 8 CRC

Data in 0x2f 0x00 0x05 0x01 0xff 0xff 0x00 0x7e 0x7d 0x7e

Data out
index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data out 0x7e 0x2f 0x00 0x05 0x01 0xff 0xff 0x00 0x7d 0x5e 0x7d 0x5d 0x7d 0x5e 0x7e

Note

F
la

g
 S

e
q
u
e

n
c
e

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

C
o
n
tr

o
l
E

s
c
a
p

e

0
x
7
e
 X

O
R

 0
x
2
0

C
o
n
tr

o
l
E

s
c
a
p

e

0
x
7
d
 X

O
R

 0
x
2
0

C
o
n
tr

o
l
E

s
c
a
p

e

0
x
7
e
 X

O
R

 0
x
2
0

F
la

g
 S

e
q
u
e

n
c
e

 2.3.3 Peripherals vs. Interfaces

UART peripheral differs from the UART interface:

• The peripheral is just a byte-oriented data channel used to exchange data between the network
and external devices.

• The interface is used to control network devices from an external device using DPA
messages.
In the case of the SPI interface, the external device must be an SPI master as the DPA
network device is always an SPI slave.

 2.3.3.1 Peripherals

UART peripheral is typically used to control an external device connected to the [N] device via the HW
UART interface. The following picture shows an example where the [C] writes by UART Write & Read
DPA Request a text “Hello” to the UART peripheral at [N]. There is a terminal (external device)
connected using UART to the [N]. Text “Hello” is then displayed at the terminal and text “Hi” (in this
example the terminal automatically answers “Hi” to “Hello”) is read back to the [C] at the corresponding
DPA Request.

 2.3.3.2 Interface

The interface connects any ([C] or [N]) network device to the external autonomous device and allows
the external device to control the network and/or network device. By default the interface is always
enabled at [C] device because it gives an external device means to control the [C] as well as the rest of
the network. The interface at [N] device is enabled if the appropriate DPA plug-in is uploaded. See DPA
Messages for details of the messages exchanged over the interface. Next table shows some differences
in the interface behavior at different network devices:

SPI or UART C N

> Hello
< Hi
_

UART

1. Request: CMD_UART_WRITE_READ(“Hello”)

2. Response: CMD_UART_WRITE_READ = “Hi”

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 13

Topic Device

[C] [N]

DPA Messages DPA Request (in)
DPA Confirmation (out)
DPA Response (out)

DPA Request (in)
DPA Response (out)
DPA Notification (out)

NADR at DPA Request See NADR at General message
parameters. Invalid value
generates an ERROR_NADR
error code. Both values 0x0000
and 0x00FC address the [C]
device itself.

Only value 0x00FC is allowed and it
addresses the [N] device itself. Other
values are silently ignored. There is
no way to directly control [C] device
coupled to [N] by its interface.

See Examples of interface usage.

 2.4 DPA Plug-in filename

DPA protocol implementation is distributed in the form of the IQRF plug-in. The plug-in filename has
the following format:

DPA-[device]-[rfmode]-[interface]-[tr]-[version]-[date].iqrf

Item Value Description

[device] Coordinator Coordinator device [C]

Node Node device [N]

[rfmode] STD [N] works in STD-RX mode.

LP [N] works in LP-RX mode.

<empty> [C] controls both STD+LP and STD networks.

[interface] SPI SPI interface

UART UART interface

<empty> No interface supported by [N]

[tr] 7xD
7xG

For TRs of 7xD series
For TRs of 7xG series

[version] Vabc DPA version a.bc (e.g. V416 stands for version 4.16)

[date] yymmdd Release date (e.g. 210818 stands for August 18th, 2021)

The following table depicts all available DPA plug-ins with supported features:

DPA Plug-in

Feature

Device Network Interface Implemented Peripherals (1)

C
o
o
rd

in
a
to

r

N
o
d
e

S
T

D
+

L
P

S
T

D

S
P

I

U
A

R
T

C
o
o
rd

in
a
to

r

N
o
d
e

U
A

R
T

F
R

C

DPA-Coordinator-SPI-7xy-V[version]-[date].iqrf ✓ ✓ ✓ ✓ ✓(2) ✓(2)

DPA-Coordinator-UART-7xy-V[version]-[date].iqrf ✓ ✓ ✓ ✓ ✓(2) ✓(2)

DPA-Node-STD-7xy-V[version]-[date].iqrf ✓ ✓ ✓ ✓(2) ✓

DPA-Node-LP-7xy-V[version]-[date].iqrf ✓ ✓ ✓(2) ✓

DPA-Node-STD-UART-7xy-V[version]-[date].iqrf ✓ ✓ ✓ ✓ ✓(2)

(1) All other embedded peripherals are always implemented.
(2) The peripheral is enabled regardless of the configuration settings.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 14

 2.5 Message parameters

All numbers are in the hexadecimal format unless otherwise noted.

Parameter Value [hex] Description

NADR
[2B]

00 IQMESH Coordinator

01-EF IQMESH Node address

F0-FB Reserved

FC Local (over interface) device

FD Reserved

FE IQMESH temporary address

FF IQMESH broadcast address

100-FFFF Reserved

Network device address. Although it is 2 bytes
wide, the 2B addressing is not supported (a
higher byte is ignored).

PNUM
[1B]

00 COORDINATOR

01 NODE

02 OS

03 EEPROM

04 EEEPROM

05 RAM

06 LEDR

07 LEDG

08 Reserved

09 IO

0A Thermometer

0B Reserved

0C UART

0D FRC

0E-1F Reserved

20-3E User peripherals

3F Not available

40-7F Reserved

80-FD Not available

FE PNUM_ERROR_FLAG

FF Not available

Peripheral number
(0x00–0x1F reserved for embedded

peripherals)
(0x40–0x7F reserved for IQRF standard

peripherals)

PCMD
[1B]

0-3E Command value

3F Not available

40-7F Command value

80-FF Not available

Command specifying an action to be taken.
The allowed value range depends on the
peripheral type.
The most significant bit is reserved for the
indication of the DPA response message.

HWPID
[2B]

0000 Default HW Profile

0001-xxxE Certified HW Profiles

C05E OTA Handler

xxxF User HW Profiles

FFFF Reserved

HW profile ID (HWPID from now) uniquely
specifies (the functionality of) the device, the
user peripherals it implements, its behavior,
etc. The only device having the same HWPID
as the DPA Request will execute the request.
When 0xFFFF is specified then the device

with any HW profile ID will execute the
request. Note - HWPID numbers used
throughout this document are fictitious ones.

PData
[0-56B]

An array of bytes. The maximum length is
limited to 56 bytes (decimal).

Optional message data.

 2.6 DPA Messages

DPA protocol (messages) is transferred over an interface that connects TR module (“slave”) to a
superordinate system (”master”).

• Master sends DPA Request.

• If addressee (NADR) is a (remote) IQMESH [N], not a local over the interface connected device
(applies only to [C]), then:

https://doc.iqrf.org/IQRF-Standards/StandardHWPID/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 15

• The device immediately sends DPA Confirmation back to the interface master.

• [N] processes the DPA message.

• If the DPA message does not have a read-only (can be configured by
EnableIFaceNotificationOnRead) side-effect and the interface is enabled for the DPA
communication at the [N] side, then the [N] sends DPA Notification to its interface.

• If the DPA message was not sent using the broadcast address.

• [N] returns DPA response to [C] via RF.

• [C] receives the DPA response and re-sends it to the interface master.

• In the case of a local device

• The device processes the DPA Request. In this case, both the sender and addressee address
values of the request equal 0xFC (local address).

• The device returns the DPA response to the interface master.

 2.6.1 DPA Request

DPA Request consists of a foursome with optional data, depending on the actual request. DPA Request
is executed only if the specified HW profile ID matches the HW profile ID of the device unless the HW
profile ID in the foursome equals 0xFFFF (HWPID_DoNotCheck). In some scenarios, the request can
be asynchronously sent from [N] to [C]. Then it is marked as asynchronous the same way as
asynchronous DPA Response.

 2.6.2 DPA Confirmation

DPA Confirmation confirms the reception of DPA Request by interface slave to interface master at the
[C]. It consists of the same foursome that was part of the original DPA Request plus the following 5
additional data bytes. The Confirmation is not returned if the Request is incorrect (e.g. if the request
NADR is not valid). In this case, a Response with an error code is returned.

The format of the Confirmation data bytes is the following

0 1 2 3 4

STATUS_CONFIRMATION DPA Value Hops Timeslot length in 10 ms units

Hops Response

DPA Value DPA value of the device.
Hops Number of hops used to deliver the DPA Request to the addressed [N]. A hop

represents any sending of a packet including sending from the sender as well
as from any routing [N].

Timeslot length Timeslot length used to deliver the DPA Request to the addressed [N]. Please
note that the timeslot used to deliver the response message from [N] to [C] can
have a different length.

Hops Response Number of hops used to deliver the DPA Request from the addressed [N] back
to the [C]. In the case of broadcast, this parameter is 0 as there is no response
sent back to the [C].

IQMESH timeslot length depends on the PData length of the DPA messages (the values may change
in the future depending on the version of the DPA protocol and IQRF OS version) and the current
network type (STD+LP, STD).

PData length [bytes] Timeslot length [ms]

STD STD+LP

< 17 40 80

17 - 40 50 90

> 40 60 100

This information can be used to implement a precise timing of the control system (master) connected to
the [C] device by the interface to prevent data collision (e.g. when another DPA Request is sent to the
network before routing of the previous communication is finished) at the network.

1. Wait till the previous IQMESH routing is finished (see step 7).

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 16

2. Make sure the interface is ready (e.g. SPI status is ReadyCommunication) and no data remained
for reading from the interface.

3. Send DPA Request via the interface.
4. Receive DPA Confirmation via the interface. Remember the time when the DPA Confirmation was

received (to be used later in step 7).
5. Now, wait (Hops + 1) × Timeslot length × 10 ms till the DPA Request routing is finished.

Note: if it takes some extra time to prepare and send the response back at the [N] side then, this
time, it must be considered (added) to the total routing time.

6. Read DPA Response from the interface within the time (Hops Response + 1) × Estimated response
timeslot length × 10 ms + Safety timeout. Estimated response timeslot length is the value based on
the expected length of data returned within the DPA Request or it can be the worst case (e.g. 6 =
60 ms at STD mode).

7. Find out the Actual response timeslot length from the PData length of the actual DPA Response.
Now the earliest time to send something to the IQMESH network equals Time the DPA Confirmation
was received + (Hops + 1) × Timeslot length × 10 ms + (Hops Response + 1) × Actual response
timeslot length × 10 ms. This time is used for waiting at step 1.

Using this technique ensures reliable and optimal speed data delivery at the IQMESH network. Pay
attention to the DPA Requests that produce an intentional delay at the addressed device side (e.g.
UART Write& Read, IO Set, OS Sleep, OS Reset, LoadCode, Run RFPGM). Such delay (time) must be
added to the total response time. Also, the response time for Discovery and Bond Node requests is not
predictable at all.

Please note that the OS Read command returns the shortest and the longest timeslot length. Please
also see IQMESH Timing Calculator.

Example
The next figure shows processing UART Write & Read request. The DPA Request is marked Request
1. It writes 5 bytes of data to [Nn] UART peripheral, it waits 20 ms, and then it reads a number
(unknown in advance) of bytes back from the UART peripheral. The network is operated at STD
mode.

After sending Request 1 to the [C] the [C] replies by Confirmation 1. The DPA Confirmation reports q
hops to deliver a DPA Request from [C] to [Nn] with a timeslot of 40 ms and also r hops to deliver the
response back from [Nn] to [C]. After the DPA Confirmation is sent the [C] transmits the RF packet to
the network (1st hop). The packet is received by [N1] and [N1] routes the packet further (2nd hop). The
routed packet is received by [N2] as expected. The routing continues. Last but one [Nn-1] receives the
routed packet and because of positive RF conditions and network topology the routed packet is also
early received by the addressed [Nn]. Then [Nn-1] makes the very last routing but [Nn] does not receive
the packet again.

Then DPA writes 5 bytes of data to the UART, waits another 20 ms, and reads data from UART. In our
example total of 20 bytes is read which results in the real timeslot of 50 ms to be used to deliver the
response back from [N3] to [C].

Then [Nn] waits for the still running routing to finish. After that [Nn] transmits the response packet to the
network (1st hop). The packet is received by [Nn-1] which routes the packet further (2nd hop). The routing
continues. The routed packet is received by [N2]. [N2] routes the packet to [N1]. The packet is also
received by [C]. [C] immediately delivers Response 1 to its interface. At the same time [N1] finally routes
the packet to the [C] which receives it but identifies it as the already received response thus [C] does
not report it to the interface again.

The optimistic response time is:
((q + 1) × 40 ms) + 20 ms + ((r + 1) × 40 ms)

The pessimistic response time is:
((q + 1) × 40 ms) + 20 ms + ((r + 1) × 60 ms)

But the real response time was:
((q + 1) × 40 ms) + 20 ms + ((r + 1) × 50 ms)

https://doc.iqrf.org/DpaTechGuide/misc/IqMeshTiming.htm

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 17

An optimistic response routing scenario is represented by dotted green arrows (potential 40 ms
timeslot) and a pessimistic scenario is shown by dotted red arrows (potential 60 ms timeslot).

The next Request 2 cannot be sent to the network immediately after Response 1 is received. The RF
collision would occur. Request 2 can be issued after the actual routing finishes (end of the dotted blue
arrow) the soonest. Another approach is to send the next DPA Request to the [C] after the pessimistic
(using the longest 60 ms response timeslot) is finished. For many applications that do not have to be
time optimized this is the reasonable and easy to compute way of timing.

Throughout the document in the following examples of the DPA communication, the DPA Confirmation
is not usually stated as the emphasis is put on DPA Request-Response pair messages.

 2.6.3 DPA Notification

DPA Notification notifies a connected master device at the [N] side that there was a DPA Request
without a “read-only” (can be configured by EnableIFacenotificationOnRead) side-effect processed by
the [N]. It consists of the same foursome that was part of the original DPA Request except for NADR
that stores the address of the sender, not the addressee, and the HWPID that contains the actual HW
Profile ID of the device. DPA Notification is therefore always 6 bytes long. DPA Request is considered
“read-only” when the corresponding DPA Request returns some data, otherwise, it is considered a
“write” request.

Confirmation 1

Request 1
[C] [N1] [N2]

T
im

e

Response 1

[Nn-1]

4
0
 m

s

Write & Read UART (20 ms)

[Nn]

4
0
 m

s

Routing

5
0
 m

s

5
0
 m

s

5
0
 m

s

Confirmation 2

Request 2

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 18

DPA Notification is issued to the connected master interface when DPA Request is sent from the [C] or
when the DPA Request is part of the FRC acknowledged broadcast (see Acknowledged broadcast - bits
and Acknowledged broadcast - bytes).

DPA Notification is not issued in the case of DPA Request invoked from a local interface, from
DpaApiLocalRequest, or predefined FRCs Memory read and Memory read plus 1.

 2.6.4 DPA Response

DPA Request is an actual answer to the DPA Request. DPA Request consists of the same foursome
that was part of the original DPA Request except the response message is flagged by the most
significant bit of PCMD and HWPID contains the actual HW profile ID of the addressed device. Then
come 2 bytes containing the Response code and DPA Value. In the case of error (response code is
NOT equal STATUS_NO_ERROR), no additional data is present. In the case of the
STATUS_NO_ERROR response code, the presence of the additional data depends on the DPA
Request type. If the response is asynchronous, i.e. it is not a response to the previously sent request,
then the response code is marked by the highest bit set (STATUS_ASYNC_RESPONSE).

When composing DPA Request in the Custom DPA Handler there is sometimes a need to signalize an
error response with a certain Response Code. The way how to return such a response is described in
the chapter Handle Peripheral Request.

 2.6.5 Examples

Note: DPA Value, HWPID, and data read from the memory shown in the following examples may differ
in the real scenario.

Example 1

Switching on a red LED at Coordinator:

• DPA Request (master → slave)
NADR=0x0000, PNUM=0x06, PCMD=0x01, HWPID=0xFFFF

• DPA Response (slave → master)
NADR=0x0000, PNUM=0x06, PCMD=0x81, HWPID=0xABCD, PData={0x00}(No error), {0x07}(DPA Value)

Notes:

• NADR 0x0000 Specifies [C] address (0x00FC can be used too)

• PNUM 0x06 Specifies red LED peripheral

• PCMD 0x01 Set LED On command

• DPA Value Coordinator’s DPA value

Example 2

Reading 2 bytes from RAM at address 1 of the local [N]:

• DPA Request (master → slave)
NADR=0x00FC, PNUM=0x05, PCMD=0x00, HWPID=0xFFFF, PData={0x01}(Address), {0x02}(Length)

• DPA Response (slave → master)
NADR=0x00FC, PNUM=0x05, PCMD=0x80, HWPID=0xABCD
PData={0x00}(No error), {0x07}(DPA Value), {0xAB,0xCD}(Read data)

Notes:

• NADR 0x00FC Specifies local device address

• PNUM 0x05 Specifies RAM peripheral

• PCMD 0x00 Read command

• DPA Value Local Node’s value

Example 3

Switching on a green LED at a remote [N] with address 0x0A:

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 19

• DPA Request (master → slave)
NADR=0x000A, PNUM=0x07, PCMD=0x01, HWPID=0xFFFF

• DPA Confirmation (slave → master)
NADR=0x000A, PNUM=0x07, PCMD=0x01, HWPID=0xFFFF, PData={0xFF}(Confirmation), {0x07}(DPA Value),
{0x06,0x04,0x06}(Hops, Timeslot length, Hops response)

• DPA Notification (slave → master) at remote [N] side
NADR=0x0000, PNUM=0x07, PCMD=0x01, HWPID=0xABCD

• DPA Response (slave → master)
NADR=0x000A, PNUM=0x07, PCMD=0x81, HWPID=0xABCD, PData={0x00}(No error), {0x06}(DPA Value)

Notes:

• PNUM 0x07 Specifies the green LED peripheral.

• NADR 0x0000 At the notification specifies that the [C] sent the original DPA Request.

• DPA Value DPA Confirmation: Coordinator’s value
 DPA Request: remote Node’s value

 2.7 Device exploration

Device exploration is used to obtain information about individual devices and their implemented
peripherals.

 2.7.1 Peripheral enumeration

Request

NADR PNUM PCMD HWPID

NADR 0xFF 0x3F ?

The HWPID value is ignored at this command.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0…1 2 3…6 7…8 9…10 11 (12…23)

NADR 0xFF 0xBF ? 0 ? DpaVer UserPerNr EmbeddedPers HWPID HWPIDver Flags UserPer

DpaVer DPA protocol version

• 1st byte: bits 0-6 = minor version

• 2nd byte: major version
 BCD coding is used, e.g. version 12.34 is coded as 0x1234, i.e. 1st byte 0x34, 2nd byte

0x12
UserPerNr Number of all non-embedded peripherals implemented by Custom DPA Handler.

Implemented peripherals are flagged at the UserPer variable-size bitmap array. At the
Enumerate Peripherals event, the field is prefilled by 0x00.

EmbeddedPers Bits array (starting from LSb of the 1st byte) specifying which of 32 embedded
peripherals are enabled in the TR Configuration (it is a copy of the first 4 bytes of the
configuration area). If a peripheral is enabled in the configuration although it is not
supported by the device, then calling Get peripheral information or Get information for
more peripherals will return PERIPHERAL_TYPE_DUMMY peripheral type for this
peripheral thus indicating that the peripheral is not available.

 Bit values for Coordinator (bit 0) and Node (bit 1) peripherals are set according to the
device support of these peripherals regardless of actual bit values stored at TR
Configuration. The bit for OS (bit 2) is always set. The bit for FRC (bit 5 at byte index 4)
is always set at [C] device.

HWPID Hardware profile ID, 0x0000 if default. At the Enumerate Peripherals event, the field is
prefilled by 0x0000.

HWPIDver Hardware profile version, 1st byte = minor version, 2nd byte = major version. At the
Enumerate Peripherals event the field is prefilled by 0x0000.

Flags Various flags:

• bit 0 Device works in STD-RX mode.

• bit 1 Device works in LP-RX mode.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 20

 Bits 0 and 1 are mutually exclusive.

• bit 2 STD+LP network is running, otherwise STD network.
 The value is undefined in the case of unbonded [N].

• bit 3-7 Reserved
UserPer Bits array (starting from LSb of the 1st byte) specifying which of the non-embedded

peripherals are implemented. 1st bit corresponds to the peripheral 0x20 = PNUM_USER.
The corresponding bits must be set at the Enumerate Peripherals event. The length of
this array can be from 0 to 12 bytes depending on the last implemented user peripheral
number. the number of bits set in the bitmap must equal the UserPerNr.

Example

• Request
NADR=0x0000, PNUM=0xFF, PCMD=0x3F, HWPID=0xFFFF

• Response
NADR=0x0000, PNUM=0xFF, PCMD=0xBF, HWPID=0xABCD, PData={0x00}(No error), {0x07}(DPA

Value),{02,03}(DpaVer 3.02), {02}(UserPerNr), {E6,06,00,00}(StdPers), {CD,AB}(HWPID), {01,00}(HWPIDver),
{41}(Flags), {02,01}(UserPer)

[C] (NADR=0x0000) having 2 user defined peripheral, Hardware profile ID of type 0xABCD (version
0x0001), DPA version 2.12.
The following embedded peripherals are enabled:

• 0x01 NODE

• 0x02 OS

• 0x05 RAM

• 0x06 LEDR

• 0x07 LEDG

• 0x09 IO
• 0x0A Thermometer

bit array (E6,06,00,00): 11100110.00000110.00000000.00000000

The following user peripherals are implemented:

• 0x21
• 0x28

bit array (02,01): 00000010.00000001

 2.7.1.1 Source code support

typedef struct
{
 uns16 DpaVersion;
 uns8 UserPerNr;
 uns8 EmbeddedPers[PNUM_USER / 8];
 uns16 HWPID;
 uns16 HWPIDver;
 uns8 Flags;
 uns8 UserPer[(PNUM_MAX - PNUM_USER + 1 + 7) / 8];
} TEnumPeripheralsAnswer;

TEnumPeripheralsAnswer _DpaMessage.EnumPeripheralsAnswer;

 2.7.2 Get peripheral information

Returns detailed information about the peripheral.

Request

NADR PNUM PCMD HWPID

NADR PNUM 0x3F ?

The HWPID value is ignored at this command.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 21

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3

NADR PNUM 0xBF ? 0 ? PerTE PerT Par1 Par2

PerTE Extended peripheral characteristic. See Extended Peripheral Characteristic constants.
PerT Peripheral type. If the peripheral is not supported or enabled,
 then PerTx = PERIPHERAL_TYPE_DUMMY. See Peripheral Types constants.
Par1 Optional peripheral specific information.
Par2 Optional peripheral specific information.

 2.7.2.1 Source code support

typedef struct
{
 uns8 PerTE;
 uns8 PerT;
 uns8 Par1;
 uns8 Par2;
} TPeripheralInfoAnswer;

TPeripheralInfoAnswer _DpaMessage.PeripheralInfoAnswer;

 2.7.3 Get information for more peripherals

Returns the same information as Get peripheral information but for up to 14 peripherals of consecutive
indexes starting with the specified PCMD.

Request

NADR PNUM PCMD HWPID

NADR 0xFF Per ?

Per Number of the first peripheral from the list to get the information about. The parameter

value cannot be 0x3F because it would collide with the Peripheral enumeration
command.

The HWPID value is ignored at this command.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3 … 4×(n-1) 4×(n-1)+1 4×(n-1)+2 4×(n-1)+3

NADR 0xFF RPer ? 0 ? PerTE1 PerT1 Par11 Par21 … PerTEn PerTn Par1n Par2n

RPer Same as Per at the request but with the most significant bit set to indicate a response

message.
n ∈ [0,14] Number of peripherals the information was returned about. n = 0 when no peripheral

information is returned.

If the peripheral at index x is not supported or enabled, then PerTx = PERIPHERAL_TYPE_DUMMY.
The response data is always right-trimmed to the last supported or enabled peripheral that can fit in the
data array i.e. the data never ends with one or more peripheral information with PerTx =
PERIPHERAL_TYPE_DUMMY.

 2.7.3.1 Source code support

TPeripheralInfoAnswer _DpaMessage.PeripheralInfoAnswers[MAX_PERIPHERALS_PER_BLOCK_INFO];

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 22

 3 Peripherals
This (the longest) chapter documents all available embedded peripherals and their commands. Nested
chapters named Source code support show prepared C code types and variables to access the
peripheral command from the code. This is done typically at Custom DPA Handler code.

 3.1 Standard operations in general

Commands marked [sync] are executed after IQMESH routing is finished thus this event is synchronized
among all devices that handled the original DPA Request. This applies to the DPA Request being sent
using the broadcast address. If the [sync] command is executed on [C] it important to send a next
command after it is fully executed or the subsequent command will be ignored.

Commands marked [comdown] wait for a maximum of 100 ms to flush output buffers of SPI/UART
Peripheral/Interface and then shut it down. This is to prevent raising HW interrupts or to release the OS
bufferCOM variable that is used internally. After the command is finished the object is restarted.

DPA Requests may return the following error codes:

ERROR_PCMD The PNUM does not support the specified PCMD.

ERROR_PNUM The specified PNUM is not supported or the PNUM does not support the specified

PCMD.

ERROR_DATA_LEN The number of bytes at the PData message parameter is not appropriate for the

specified PNUM/PCMD pair.

ERROR_HWPID The specified HWPID does not correspond to an HWPID of the device.

ERROR_NADR The NADR specifies the non-bonded device.

 3.1.1 Writing to peripheral

Request

NADR PNUM PCMD HWPID 0 … n - 1

NADR PNUM PCMD ? PData0 … PDatan-1

n Data length

Response

NADR PNUM PCMD HWPID ErrN DpaValue

NADR PNUM PCMD ? 0 ?

PCMD Same as PCMD at the request but with the most significant bit set to indicate the

response message.

 3.1.1.1 Source code support

uns8 _DpaMessage.Request.PData[DPA_MAX_DATA_LENGTH];

 3.1.2 Reading from peripheral

Request

NADR PNUM PCMD HWPID

NADR PNUM PCMD ?

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 23

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … n - 1

NADR PNUM PCMD ? 0 ? PData0 … PDatan-1

PCMD Same as PCMD at the request but with the most significant bit set to indicate the

response message.
n Data length

 3.1.2.1 Source code support

uns8 _DpaMessage.Response.PData[DPA_MAX_DATA_LENGTH];

 3.2 Coordinator

PNUM = 0x00

This peripheral is implemented at [C] device and it is always enabled there regardless of the
configuration settings.

General note: The bond state of the [N] is not synchronized between the [N] and [C]. There are separate
requests concerning the bonding at a [N] and a [C].

 3.2.1 Peripheral information

PerT PERIPHERAL_TYPE_COORDINATOR

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Maximum number of data (PData) bytes that can be sent in the DPA messages
Par2 Undocumented

 3.2.2 Get addressing information

Returns basic network information.

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x80 ? 0 ? DevNr DID

DevNr Number of bonded network Nodes
DID Discovery ID of the network

 3.2.2.1 Source code support

typedef struct
{
 uns8 DevNr;
 uns8 DID;
} TPerCoordinatorAddrInfo_Response;

TPerCoordinatorAddrInfo_Response _DpaMessage.PerCoordinatorAddrInfo_Response;

 3.2.3 Get discovered Nodes

Returns a bit map of discovered Nodes.

Same as Get bonded Nodes but PCMD = 0x01.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 24

 3.2.4 Get bonded Nodes

Returns a bitmap of bonded Nodes.

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … 31

NADR 0x00 0x82 ? 0 ? PData0 … PData31

PData0-31 Bit array indicating bonded Nodes (addresses). Address 0 at bit0 of PData0, Address 1

at bit1 of PData0, etc. Bit values corresponding to the addresses out of the IQMESH
address space range are undefined.

 3.2.4.1 Source code support

uns8 _DpaMessage.Response.PData[DPA_MAX_DATA_LENGTH];

 3.2.5 Clear all bonds

The command removes all Nodes from the list of bonded Nodes at [C] memory. It deletes the network
from the [C] point of view.

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x03 ?

Response: General response to writing request with STATUS_NO_ERROR Error code

 3.2.6 Bond Node

This command bonds a new [N] by the [C]. There is a maximum of approx. 10 s blocking delay when
this function is called. The command must not be used inside Batch or Selective Batch.

Please note that the bonded [N] does not have to be configured for a working network RF channel as
the channel is automatically inherited from the network member that provided the bonding and then
written to the configuration.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x04 ? ReqAddr BondingTestRetries

ReqAddr A requested address for the bonded [N]. The address must not be used (bonded)

yet.
If this parameter equals 0, then the 1st free address is assigned to the [N].
If this parameter equals 0xF0 and the next parameter BondingTestRetries is 0,
then activation of the IQuip is performed for the later OTK bonding. See IQuip
users guide for more details.

BondingTestRetries Maximum number of FRCs used to test whether the [N] was successfully bonded.
If the [N] does not respond, it is unbonded at the Coordinator’s side. If the value
is 0, then no test is performed. If the [N] is connected to and bonded from DSM
then this testing never succeeds.

Response

https://doc.iqrf.org/IQMESH-Network-deployment/index.html?page=bonding-including-a-node-into-the-network.html
https://www.iqrf.org/product-detail/iqd-nfc-01-iquip

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 25

BondAddr Address of the [N] newly bonded to the network. The value is undefined in the

case of IQuip activation.
DevNr Total number of bonded Nodes.

Error codes
ERROR_FAIL a. Nonzero ReqAddr is already used.

b. No free address is available when ReqAddr equals 0.
d. ReqAddr is out of range of valid addresses.
e. Internal call to bondNewNode failed.
f. Bonded [N] did not respond to the testing FRC.

 3.2.6.1 Source code support

typedef struct
{
 uns8 ReqAddr;
 uns8 BondingTestRetries;
} TPerCoordinatorBondNode_Request;

TPerCoordinatorBondNode_Request _DpaMessage.PerCoordinatorBondNode_Request;

typedef struct
{
 uns8 BondAddr;
 uns8 DevNr;
} TPerCoordinatorBondNodeSmartConnect_Response;

TPerCoordinatorBondNodeSmartConnect_Response _DpaMessage.PerCoordinatorBondNodeSmartConnect_Response;

 3.2.7 Remove bonded Node

Removes [N] from the list of bonded (only already bonded [N]) and discovered (even not bonded [N])
[Ns] at [C] memory.

Request

BondAddr Address of the [N] to remove the bond to

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x85 ? 0 ? DevNr

DevNr Number of bonded network Nodes

Error codes
ERROR_FAIL BondAddr does not specify a bonded [N].

 3.2.7.1 Source code support

typedef struct
{
 uns8 BondAddr;
} TPerCoordinatorRemoveBond_Request;

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x84 ? 0 ? BondAddr DevNr

NADR PNUM PCMD HWPID 0

NADR 0x00 0x05 ? BondAddr

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 26

TPerCoordinatorRemoveBond_Request

_DpaMessage.PerCoordinatorRemoveBond_Request;

typedef struct
{
 uns8 DevNr;
} TPerCoordinatorRemoveBond_Response;

TPerCoordinatorRemoveBond_Response
 _DpaMessage.PerCoordinatorRemoveBond_Response;

 3.2.8 Discovery

[comdown] Runs IQMESH discovery process. The time when the response is delivered depends highly
on the number of network devices, the network topology created using specified TxPower, and RF
mode, thus, it is not predictable. It can take from a few seconds to many minutes.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x07 ? TxPower MaxAddr

TxPower TX Power used for discovery.
MaxAddr Zero-value specifies, that all bonded [Ns] will take part in the discovery process.

The nonzero value specifies the maximum [N] address to be part of the discovery
process. This feature allows splitting all [Ns] into two parts: [1] devices having an
address from 1 to MaxAddr will be part of the discovery process thus they become
routers, [2] devices having an address from MaxAddr+1 to 239 will not be routers. See
IQRF OS documentation for more information.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x87 ? 0 ? DiscNr

DiscNr Number of discovered network Nodes

Error codes
ERROR_FAIL When the internal call of discovery fails.

 3.2.8.1 Source code support

typedef struct
{
 uns8 TxPower;
 uns8 MaxAddr;
} TPerCoordinatorDiscovery_Request;

TPerCoordinatorDiscovery_Request _DpaMessage.PerCoordinatorDiscovery_Request;

typedef struct
{
 uns8 DiscNr;
} TPerCoordinatorDiscovery_Response;

TPerCoordinatorDiscovery_Response _DpaMessage.PerCoordinatorDiscovery_Response;

https://doc.iqrf.org/IQMESH-Network-deployment/index.html?page=discovery-creating-the-routing-structure.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 27

 3.2.9 Set DPA Param

Sets DPA Param. DPA Param (DPA Parameter) is a one-byte parameter stored in the [C] RAM that
configures network behavior. Default value 0x00 is set upon [C] reset or restart.

Bit Description

0-1

Specifies which type of DPA Value is returned in every DPA Request or DPA Confirmation
message:

 00 lastRSSI: IQRF OS variable value (*). In the case of the [C] device, the value is 0 until
some RF packet is received.

 01 voltage: Value returned by getSupplyVoltage IQRF OS function (*).

 10 system:

 bit 0: Equals bit DSMactivated.

 bits 1-6: Reserved

 bit 7: (*)

 11 user-specified DPA Value. See UserDpaValue.

2-7 Reserved

(*) The highest bit.7 indicates that the supply voltage is out of the recommended range. See Supply
Voltage for more information about supply voltage values.

DPA Param is transparently sent with every DPA message from the [C] and thus, it controls the network
behavior “on the fly”. It is not permanently stored at Nodes.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x08 ? DpaParam

DpaParam DPA Param to set.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x88 ? 0 ? DpaParam

DpaParam Previous value

 3.2.9.1 Source code support

typedef struct
{
 uns8 DpaParam;
} TPerCoordinatorSetDpaParams_Request_Response;

TPerCoordinatorSetDpaParams_Request_Response

_DpaMessage.PerCoordinatorSetDpaParams_Request_Response;

 3.2.10 Set Hops

Allows the specifying fixed number of hops used to send the DPA Request/Response or to specify an
optimization algorithm to compute the number of hops. The default value 0xFF is set upon device reset.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x09 ? RequestHops ResponseHops

Hops values:

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=getsupplyvoltage.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 28

0x00, 0xFF: See a description of the parameter of function optimizeHops in the IQRF OS
documentation. 0x00 does not make sense for the Response Hops parameter.

0x01 - 0xEF: Sets number of hops to the value Request/ResponseHops - 1.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x89 ? 0 ? RequestHops ResponseHops

Request/Response Hops Previous values

 3.2.10.1 Source code support

typedef struct
{
 uns8 RequestHops;
 uns8 ResponseHops;
} TPerCoordinatorSetHops_Request_Response;

TPerCoordinatorSetHops_Request_Response

_DpaMessage.PerCoordinatorSetHops_Request_Response;

 3.2.11 Backup

This command reads [C] network information data that can be then restored to another [C] to make a
clone of the original [C]. The backup data structure is not public and it is encrypted (except the very last
byte) by an AES-128 algorithm using an access password as a key. Backup data does not contain the
device configuration. Use Read TR Configuration and Write TR Configuration instead.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x0B ? Index

Index Index of the block of data

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … 48

NADR 0x00 0x8B ? 0 ? NetworkData

NetworkData One block of the [C] network info data

To read all data blocks just start with Index = 0 and execute the Backup request. Then store the received
data block from the response. The last byte of the read data specifies how many data blocks remain to
be read. So, if this byte is not 0 just increment Index (0, 1, …) and execute another Backup request.

Error codes
ERROR_DATA Index is out of range.

ERROR_FAIL Error accessing serial EEPROM chip.

 3.2.11.1 Source code support

typedef struct
{
 uns8 Index;
} TPerCoordinatorNodeBackup_Request;

TPerCoordinatorNodeBackup_Request _DpaMessage.PerCoordinatorNodeBackup_Request;

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=optimizehops.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 29

typedef struct
{
 uns8 NetworkData[49];
} TPerCoordinatorNodeBackup_Response;

TPerCoordinatorNodeBackup_Response _DpaMessage.PerCoordinatorNodeBackup_Response;

 3.2.12 Restore

The command allows writing previously backed up [C] network data to the same or another [C] device.
To execute the full restore all data blocks (in any order) obtained by Backup commands must be written
to the device. Because the data to restore is encrypted by an AES-128 algorithm using an access
password as a key, the access password at the device must be the same as the access password at
the device that was originally backed up.

The following conditions must be met to make the [C] backup fully functional:

• Backed-up and restored devices have the same access password.

• No network traffic comes from/to restored [C] during the restore process.

• [C] device is reset or restarted after the whole restore is finished.

• It is recommended to run the Discovery command before the network is used after the
restoration because of possible RF differences between new and previous [C] device HW.

Request

NetworkData One block of the [C] network info data that was previously obtained by the Backup
command.

Response: General response to writing request with STATUS_NO_ERROR Error code

Error codes
ERROR_DATA Invalid (access password does not match) or inappropriate (e.g. [C] data used to

restore [N] or vice versa) NetworkData content.
ERROR_FAIL Error accessing serial EEPROM chip.

 3.2.12.1 Source code support

typedef struct
{
 uns8 NetworkData[49];
} TPerCoordinatorNodeRestore_Request;

TPerCoordinatorNodeRestore_Request _DpaMessage.PerCoordinatorNodeRestore_Request;

 3.2.13 Authorize bond

Authorizes previously prebonded [Ns]. This assigns the [Ns] to the final network address. The command
must not be used inside Batch or Selective Batch.

Request

NADR PNUM PCMD HWPID 0 1…4 … n × 5 n × 5 + 1… n × 5 + 4

NADR 0x00 0x0D ? ReqAddr0 MID0 … ReqAddr n MIDn

ReqAddr See Bond Node request.

If 0xFF is specified then the prebonded [N] is unbonded and then reset.
Values 0x00 and 0xFF are not allowed if multiple [Ns] (more than 1) are validated.

MID Module ID of the [N] to be authorized. Module ID is typically obtained by
PrebondedMemoryReadPlus1.

NADR PNUM PCMD HWPID 0 … 48

NADR 0x00 0x0C ? NetworkData

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 30

Response

BondAddr Single [N] authorization: address of the [N] newly bonded to the network
 Multiple [Ns] authorizations: 0
DevNr Total number of bonded Nodes

Error codes
ERROR_FAIL a. Nonzero ReqAddr is already used.

b. No free address is available when ReqAddr equals 0.
c. Internal call to nodeAuthorization failed when single [N] was validated.
d. Some ReqAddr is out of an interval [1;239] but multiple [Ns] are validated.

 3.2.13.1 Source code support

typedef struct
{
 uns8 ReqAddr;
 uns8 MID[4];
} TPerCoordinatorAuthorizeBond_Request;

TPerCoordinatorAuthorizeBond_Request _DpaMessage.PerCoordinatorAuthorizeBond_Request;

typedef struct
{
 uns8 BondAddr;
 uns8 DevNr;
} TPerCoordinatorAuthorizeBond_Response;

TPerCoordinatorAuthorizeBond_Response

_DpaMessage.PerCoordinatorAuthorizeBond_Response;

 3.2.14 Smart Connect

This command bonds [N] using the Smart Connect process. For details please see IQRF OS User's
Guide. The command must not be used inside Batch or Selective Batch. The Smart Connect parameters
can be effectively stored at IQRF Code to automate the bonding process.

Request

NADR PNUM PCMD HWPID 0 1 2 … 17 18 … 21 22

NADR 0x00 0x12 ? ReqAddr BondingTestRetries IBK MID res0

23 24 … 27 28 … 37

VirtualDeviceAddress UserData res1

ReqAddr A requested address for the bonded [N]. The address must not be used (bonded)

yet. If this parameter equals 0, then the 1st free address is assigned to the [N].

If this parameter equals 0xFE (IQMESH temporary address) and MID equals
0x00000000 then all unbonded Nodes within the RF reach of the current network
and having the same Access Password as existing members of the network will
be prebonded with the address 0xFE. When the 0xFE parameter is used please
make sure all other command parameters are zeroed.

If this parameter equals 0xFE and MID is nonzero then only [Ns] whose
remainder by dividing their MID by MID[1] (i.e. PData[19]) equals MID[0] (i.e.
PData[18]) will be prebonded to the network. This feature is intended for building

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x8D ? 0 ? BondAddr DevNr

https://doc.iqrf.org/IQRF-Standards/IQRF-Code/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 31

so-called overlapping networks based on the Law of large numbers. Again, the
same Access Password is required.

BondingTestRetries Maximum number of FRCs used to test whether the [N] was successfully bonded.

If the [N] does not respond, it is unbonded at the Coordinator’s side. If the value
is 0, then no test is performed and the command always succeeds.

IBK Individual Bonding Key of the [N] to bond. Must be zeroed if ReqAddr equals
0xFE.

MID MID of the [N] to bond. Must be zeroed if ReqAddr equals 0xFE.
res0 Reserved. Must be zero.
VirtualDeviceAddress Virtual device address. Must equal 0xFF if not used.
UserData Reserved for future optional data passed to the bonded [N].
res1 Reserved. It must be filled with zeros.

Response

BondAddr Address of the [N] newly bonded to the network.
DevNr The number of bonded Nodes in the network.

Error codes
ERROR_FAIL a. Nonzero ReqAddr is already used.

b. No free address is available when ReqAddr equals 0.
c. ReqAddr is out of range of valid addresses.
d. Internal call to smartConnect failed.
e. None of the testing FRCs used to test the connection to the bonded [N] succeeded.

 3.2.14.1 Source code support

typedef struct
{
 uns8 ReqAddr;
 uns8 BondingTestRetries;
 uns8 IBK[16];
 uns8 MID[4];
 uns8 reserved0;
 uns8 VirtualDeviceAddress;
 uns8 UserData[4];
 uns8 reserved1[10];
} TPerCoordinatorSmartConnect_Request;

TPerCoordinatorSmartConnect_Request _DpaMessage.PerCoordinatorSmartConnect_Request;

typedef struct
{
 uns8 BondAddr;
 uns8 DevNr;
} TPerCoordinatorBondNodeSmartConnect_Response;

TPerCoordinatorBondNodeSmartConnect_Response _DpaMessage.PerCoordinatorBondNodeSmartConnect_Response;

 3.2.15 Set MID

Sets the MID value to a [N] with a specified address in the Coordinator’s database. This feature is used
after [N] restore which typically changes Node’s MID. It can be also used to make sure the Coordinator’s
database contains real MIDs after the [C] was updated from the former IQRF OS version that did not
store MIDs at [C] at all (MIDs are read as 0xFFFFFFFF). Use OS Read to obtain Node’s MID. See also
Node Restore.

Request

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x92 ? 0 ? BondAddr DevNr

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 32

NADR PNUM PCMD HWPID 0…3 4

NADR 0x00 0x13 ? MID BondAddr

MID The MID is written to the Coordinator’s database in the external EEPROM.
BondAddr Address of the [N] to set the MID to.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_FAIL Error accessing serial EEPROM chip.

 3.2.15.1 Source code support

typedef struct
{
 uns8 MID[4];
 uns8 BondAddr;
} TPerCoordinatorSetMID_Request;

TPerCoordinatorSetMID_Request

_DpaMessage.PerCoordinatorSetMID_Request;

 3.3 Node

PNUM = 0x01

This peripheral is implemented at [N] devices and it is always enabled there regardless of the
configuration settings.

General note: Bond state of the [N] is not synchronized between the [N] and [C]. There are separate
requests for [N] and [C] concerning the bonding.

 3.3.1 Peripheral information

PerT PERIPHERAL_TYPE_NODE

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Maximum number of data (PData) bytes that can be sent in the DPA messages
Par2 Undocumented

 3.3.2 Read

Returns IQMESH specific [N] information.

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … 10 11

NADR 0x01 0x80 ? 0 ? ntwADDR … ntwCFG Flags

ntwADDR … ntwCFG Block of all ntw* IQRF OS variables (ntwADDR, ntwVRN, ntwZIN, ntwDID,

ntwPVRN, ntwUSERADDRESS, ntwID, ntwVRNFNZ, ntwCFG) in the same
order and size as located in the IQRF OS memory. See IQRF OS
documentation for more information.

Flags bit 0 Indicates whether the [N] is bonded.
 bit 1-7 Reserved

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 33

 3.3.2.1 Source code support

typedef struct
{
 uns8 ntwADDR;
 uns8 ntwVRN;
 uns8 ntwZIN;
 uns8 ntwDID;
 uns8 ntwPVRN;
 uns16 ntwUSERADDRESS;
 uns16 ntwID;
 uns8 ntwVRNFNZ;
 uns8 ntwCFG;
 uns8 Flags;
} TPerNodeRead_Response;

TPerNodeRead_Response _DpaMessage.PerNodeRead_Response;

 3.3.3 Remove bond

[sync] [comdown] The [N] is marked as unbonded (removed from network) using the removeBond IQRF
OS function and then restarted (except in DSM). The bonding state of the [N] on the [C] side is not
affected at all. Please use for instance Remove bonded Node to unbond [N] at [C].

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x01 ?

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.3.4 Backup

Same as [C] Backup except PNUM = 0x01 and PCMD = 0x06.

 3.3.5 Restore

Same as [C] Restore except PNUM = 0x01 and PCMD = 0x07.

 3.3.6 Validate bonds

[sync] [comdown] (only when a [N] is unbonded and restarted) This command can be used to resolve
the situation when there are more [Ns] with the same address in the network. This incorrect situation
might happen usually in the case of Smart Connect, or due to unintended user interference when the
[N] was bonded but for some reason, it does not communicate afterward and therefore it is unbonded
at the [C] side only and its address is recycled for another [N] later.

The command can hold up to 11 pairs of the network [N] address and [N] MID in the data part. When
the command is broadcast and the [N] finds its address in the data but the MID does not equal its MID,
the [N] unbonds itself, and then it restarts (it might skip optional RFPGM after module reset).

The typical algorithm is to loop all bonded [Ns] and for each [N] to read its MID from the [C] external
EEPROM. Then pack up to 11 address/MID pairs into the command and send a series of broadcast
commands into the network.

Request

NADR PNUM PCMD HWPID 0 1…4 … n × 5 n × 5 + 1… n × 5 + 4

NADR 0x01 0x08 ? Address0 MID0 … Addressn MIDn

n ∈ [0,10] Number of validated addresses minus 1.
Address Node’s address.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=removebond.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 34

MID Node’s MID. Value 0xFFFFFFFF is ignored.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.3.6.1 Source code support

typedef struct
{
 uns8 Address;
 uns8 MID[4];
} TPerNodeValidateBondsItem;

typedef struct
{
 TPerNodeValidateBondsItem Bonds[DPA_MAX_DATA_LENGTH / sizeof(TPerNodeValidateBondsItem)];
} TPerNodeValidateBonds_Request;

TPerNodeValidateBonds_Request
_DpaMessage.PerNodeValidateBonds_Request;

 3.4 OS

PNUM = 0x02

This peripheral is always enabled regardless of the configuration settings.

 3.4.1 Peripheral information

PerT PERIPHERAL_TYPE_OS
PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Date of the DPA build coded using BCD.
Par2 Lower nibble contains the month of the DPA build date. Higher nibble contains the year

above 2010 modulo 16.

Example: Par1=0x31, Par2=4A => build date is 31. 10. 2014.

 3.4.2 Read

Returns some useful system information about the device.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … 3 4 5 6 … 7

NADR 0x02 0x80 ? 0 ? MID OsVersion McuType OsBuild

8 9 10 11 12 … 27 28 … (40…51)

Rssi SupplyVoltage Flags SlotLimits IBK PerEnum

MID,
OsVersion,
McuType,
OsBuild See moduleInfo at IQRF OS Reference Guide.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=moduleinfo.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 35

Rssi See lastRSSI at IQRF OS Reference Guide. In the case of the [C] device, the
value is 0 until some RF packet is received.

SupplyVoltage See getSupplyVoltage at IQRF OS Reference Guide.
Flags bit.0 is 1 if there is an insufficient OsVersion for the used DPA version.
 bit.1 is 0 if the SPI interface is supported (*); 1 if the UART interface is

supported (*). This bit is valid only if bit.4 is 0.
 bit.2 is 1 if Custom DPA Handler was detected.
 bit.3 is 1 if Custom DPA Handler is not detected but enabled at TR

Configuration. See details of the handling of this erroneous state.
 bit.4 is 1 if no interface is supported (*).
 bit.5 is 1 if IQRF OS is changed from the originally manufactured version.
 bit.6 is 1 if the FRC Aggregation feature is enabled by the TR manufacturer.
 bit.7 is reserved.
SlotLimits Lower nibble stores the shortest timeslot length in 10 ms units, upper nibble

stores the longest timeslot respectively. The stored length value is lowered by
3. So a value 0x31 specifies the shortest timeslot of 40 ms and the longest of
60 ms. The value is undefined in the case of unbonded [N].

IBK Individual Bonding Key.
PerEnum See the response of Peripheral enumeration.

(*) “Supported” means the interface is supported by the uploaded DPA plug-in.

 3.4.2.1 Source code support

typedef struct
{
 uns8 MID[4];
 uns8 OsVersion;
 uns8 McuType;
 uns16 OsBuild;
 uns8 Rssi;
 uns8 SupplyVoltage;
 uns8 Flags;
 uns8 SlotLimits;
 uns8 IBK[16];
 // Enumerate peripherals part, variable length because of UserPer field
 uns16 DpaVersion;
 uns8 UserPerNr;
 uns8 EmbeddedPers[PNUM_USER / 8];
 uns16 HWPID;
 uns16 HWPIDver;
 uns8 FlagsEnum;
 uns8 UserPer[(PNUM_MAX - PNUM_USER + 1 + 7) / 8];
} TPerOSRead_Response;

TPerOSRead_Response _DpaMessage.PerOSRead_Response;

 3.4.3 Reset

[sync] [comdown] Forces TR transceiver module to carry out reset.

Request

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.4 Restart

[sync] [comdown] Forces TR transceiver module to restart. It is similar to reset (the device starts, RAM,
and global variables are cleared) except MCU is not reset from the HW point of view (MCU peripherals
are not initialized) and RFPGM on reset (when it is enabled) is always skipped.

NADR PNUM PCMD HWPID

NADR 0x02 0x01 ?

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=getsupplyvoltage.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 36

Request

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.5 Read TR Configuration

Reads a raw TR Configuration memory. Bit values for [C] (bit 0), [N] (bit 1), and OS (bit 2) peripherals
stored at TR Configuration byte index 1 are set the same way as in Peripheral enumeration.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 … 31 32 33

NADR 0x02 0x82 ? 0 ? Checksum Configuration RFPGM InitPHY

Checksum The Checksum byte XORed with all Configuration bytes gives 0x5F.
Configuration Content the configuration memory block from address 0x01 to 0x1F.
RFPGM See the parameter of setupRFPGM IQRF OS function.
InitPHY This value is read-only.
 bits.0-1 RF band
 00 868 MHz
 01 916 MHz
 10 433 MHz
 00 Reserved
 bits.2-3 Reserved
 bit.4 1 if on-board thermometer sensor chip is present.
 bit.5 1 if serial EEPROM chip is present.
 bit.6 1 if transceiver is IL type i.e., for Israel region. See Device

 Startup.
 bit.7 Reserved

 3.4.5.1 Source code support

typedef struct
{
 uns8 Checksum;
 uns8 Configuration[31];
 uns8 RFPGM;
 uns8 Undocumented[1];
} TPerOSReadCfg_Response;

TPerOSReadCfg_Response _DpaMessage.PerOSReadCfg_Response;

 3.4.6 Write TR Configuration

Writes TR Configuration memory. It is a programmer's responsibility to prepare the correct configuration
block including the checksum byte. This command is for advanced users only. Please note that the
device should be restarted for all configuration changes to take effect. See TR Configuration for details.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x08 ?

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setuprfpgm.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 37

NADR PNUM PCMD HWPID 0 1 … 31 32

NADR 0x02 0x0F ? Undefined Configuration RFPGM

Undefined Value does not matter. The checksum value that is read at this same position

will be computed automatically.
Configuration Content the configuration memory block from address 0x01 to 0x1F.
RFPGM See the parameter of setupRFPGM IQRF OS function.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Example

The following example shows writing RF output power value to the configuration in the Custom DPA
Handler code. Note - for changing just a few configuration values (bytes or bits) it is more efficient to
use Write TR Configuration byte.

// Read configuration
_PNUM = PNUM_OS;
_PCMD = CMD_OS_READ_CFG;
_DpaDataLength = 0;
DpaApiLocalRequest();

// Update TX power
_DpaMessage.PerOSWriteCfg_Request.Configuration[CFGIND_TXPOWER -
offsetof(TPerOSWriteCfg_Request, Configuration)] = txPowerToSet;

// Write configuration
_PCMD = CMD_OS_WRITE_CFG;
_DpaDataLength = sizeof(TPerOSWriteCfg_Request);
DpaApiLocalRequest();

 3.4.6.1 Source code support

typedef struct
{
 uns8 Undefined;
 uns8 Configuration[31];
 uns8 RFPGM;
} TPerOSWriteCfg_Request;

TPerOSWriteCfg_Request _DpaMessage.PerOSWriteCfg_Request;

 3.4.7 Write TR Configuration byte

Writes multiple bytes (or just bits) to the TR Configuration memory. This command is for advanced users
only. The Acknowledged broadcast is recommended for writing configuration values to all or selected
Nodes as it also confirms which Nodes performed the configuration write. Please note that the device
should be restarted for some configuration changes to take effect. See TR Configuration for details.

Request

NADR PNUM PCMD HWPID 0 1 2 … n × 3 n × 3 + 1 n × 3 + 2

NADR 0x02 0x09 ? Address0 Value0 Mask0 … Addressn Valuen Maskn

n ∈ [0,17] Number of configuration items to write minus 1.
Address Address of the item at configuration memory block. The valid address range is 0x00-

0x1F for configuration values. Also, address 0x20 is a valid value for RFPGM settings.
See the parameter of setupRFPGM IQRF OS function.

Value Value of the configuration item to write.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setuprfpgm.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setuprfpgm.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 38

Mask Specifies bits of the configuration item (i.e. byte) to be modified by the corresponding
bits of the Value parameter. Only bits that are set at the Mask will be written to the
configuration byte i.e. when Mask equals 0xFF then the whole Value will be written to
the configuration byte. For example, when Mask equals 0x12 then only bit.1 and bit.4
from Value will be written to the configuration byte.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_DATA Address is out of range.

 3.4.7.1 Source code support

typedef struct
{
 uns8 Address;
 uns8 Value;
 uns8 Mask;
} TPerOSWriteCfgByteTriplet;

typedef struct
{
 TPerOSWriteCfgByteTriplet

Triplets[DPA_MAX_DATA_LENGTH / sizeof(TPerOSWriteCfgByteTriplet)];
} TPerOSWriteCfgByte_Request;

TPerOSWriteCfgByte_Request _DpaMessage.PerOSWriteCfgByte_Request;

 3.4.8 Run RFPGM

[sync] [comdown] Puts the device into RFPGM mode configured at TR Configuration. The device is
always reset when the RFPGM process is finished for any reason. RFPGM runs at the same channels
(configured at TR Configuration) the network is using.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x03 ?

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.9 Sleep

Puts the device into sleep (power saving) mode.

[sync] [comdown] This command is implemented at the [N] device only. Brown-Out Reset (BOR) is
disabled during the execution and enabled on exit at TR-7xD transceivers.

The (in)accuracy of the real sleep time depends on the PIC LFINTOSC oscillator that runs the watchdog
timer. The oscillator frequency is mainly influenced by the device supply voltage and temperature
volatility. See the PIC MCU datasheet for more details.

If the interface is used then it is disabled before going to sleep and enabled after the device wakes up.

Before going to sleep mode the UART DPA peripheral or DPA interfaces are automatically shut down
and later restarted when the device wakes up. Please consider implementing BeforeSleep and
AfterSleep events to handle MCU peripherals and pins to obtain the lowest possible device
consumption.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 39

The command provides two sleep modes. Standard sleep (with RF transceiver chip in a ready state)
and Deep sleep (with RF transceiver chip in sleep state). It might seem that the deep sleep one is always
the best choice because of lower power consumption but one must consider the time (i.e. power
consumption) needed to switch the RF transceiver from the sleep mode into the fully operational mode.
Please note Online DPA Menu at TR-7xG is not active during sleep unless wake up is enabled using
Control.bit.0.

Request

NADR PNUM PCMD HWPID 0 1 2

NADR 0x02 0x04 ? Time Control

Time Sleep time in 2.097 s or 32.768 ms units. See Control.bit.4. Maximum sleep

time is 38 hours 10 minutes 38.95 seconds or 35 minutes 47.48 seconds
respectively. 0 specifies endless sleep (except Control.bit1 is set to run the
calibration process without performing sleep). In case of endless sleep make
sure to set Control.bit.0 or Control.bit.3 to enable wake up.

Control • bit 0 Wake up on PORTB.4 pin negative edge change. See the iqrfSleep IQRF OS

function for more information.
 • bit 1 Runs the calibration process before going to sleep. Calibration takes

approximately 16 ms and this time is subtracted from the requested sleep time.
Calibration time deviation may produce an absolute sleep time error at short
sleep times. But it is worth running the calibration always before a long sleep
because the calibration time deviation then accounts for a very small total
relative error. The calibration is always run before a first sleep with nonzero
Time after the module reset if the calibration was not already initiated by Time=0
and Control.bit.1=1.

 • bit 2 If set, then when the device wakes up after the sleep period, a green LED once
shortly flashes. It is useful for diagnostic purposes.

 • bit 3 Wake up on PORTB.4 pin positive edge change. See the iqrfSleep IQRF OS
function for more information.

 • bit 4 If set then the unit is 32.768 ms instead of the default 2.097 s (i.e. 2048 ×
1.024 ms).

 • bit 5 iqrfDeepSleep instead of iqrfSleep is used. See IQRF OS documentation for
more information.

 • bit 6-7 Reserved.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Example 1

[N] #1 sleep for 1 minute with green LED flash after waking up:

Unit is 32.768 ms => sleep time is 1831 = 0x0727 units:

NADR=0x0001, PNUM=0x02, PCMD=0x04, HWPID=0xFFFF, PData={0x27}(time lower byte)

{0x07}(time higher byte) {0x14}(LED flash + finer unit)

Example 2

[N] #10 deep sleep for 1 hour with forced calibration and wake up on negative edge change:

Unit is 2.097 s => sleep time is 1717 = 0x06B5 units:

NADR=0x000A, PNUM=0x02, PCMD=0x04, HWPID=0xFFFF, PData={0xB5}(time lower byte)

{0x06}(time higher byte) {0x43}(calibration + negative edge + deep sleep)

file:///C:/Users/hynek/Documents/MICRORISC/IQRF/Online%23_DPA_Menu_
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=iqrfsleep.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=iqrfdeepsleep.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 40

 3.4.9.1 Source code support

typedef struct
{
 uns16 Time;
 uns8 Control;
} TPerOSSleep_Request;

TPerOSSleep_Request _DpaMessage.PerOSSleep_Request;

 3.4.10 Set Security

This command allows setting various security parameters.

Request

NADR PNUM PCMD HWPID 0 1 … 16

NADR 0x02 0x06 ? Type Data

Type 0 Sets an access password using the setAccessPassword IQRF OS function.
 1 Sets a user key using the setUserKey IQRF OS function.
 other Reserved
Data Data written to the specified Type of security parameter.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_DATA Invalid Type value.

 3.4.10.1 Source code support

typedef struct
{
 uns8 Type;
 uns8 Data[16];
} TPerOSSetSecurity_Request;

TPerOSSetSecurity_Request _DpaMessage.PerOSSetSecurity_Request;

 3.4.11 Batch

[sync] Batch command allows executing more individual DPA Requests within one original DPA
Request. Both the sender’s and addressee’s addresses of each embedded DPA Request equal the
corresponding addresses of the original Batch DPA Request. It is not allowed to embed the Batch
command itself within a series of individual DPA Requests (recursion is not possible). Using Run
discovery is not allowed inside the batch command list. Batch command is useful not only to group
commands but also to execute the asynchronous command(s) synchronously (after the Batch response
is sent).

Request

NADR PNUM PCMD HWPID 0 … n

NADR 0x02 0x05 ? Requests 0

Requests It contains more DPA Requests to be executed. The format in which the DPA

Requests are stored is the same as the format of IO Setup DPA Requests. See IO
Setup for more information.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setaccesspassword.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setuserkey.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 41

Example

The following example runs a simple broadcast set of 5 DPA Requests. It switches on the red LED at
devices with HW profile ID 0x1234 or green LED at devices with HW profile ID 0x5678 respectively,
then waits for 200 ms (using I/O peripheral) and finally switches the same LEDs off.

NADR=0x00FF, PNUM=0x02, PCMD=0x05, HWPID=0xFFFF, PData=
[1st command] {0x05(length), 0x06(PNUM=LEDR), 0x01(PCMD=LED on), 0x1234(HWPID)},
[2nd command] {0x05(length), 0x07(PNUM=LEDG), 0x01(PCMD=LED on), 0x5678(HWPID)},
[3rd command] {0x08(length), 0x09(PNUM=I/O), 0x01(PCMD=Set),0xFFFF(HWPID),0xFF(Delay command),0x00C8(200 ms)}
[4th command] {0x05(length), 0x06(PNUM=LEDR), 0x00(PCMD=LED off),0x1234HWPID)},
[5th command] {0x05(length), 0x07(PNUM=LEDG), 0x00(PCMD=LED off),0x5678HWPID)},
{0x00(end of the batch)}

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.12 Selective Batch

[sync] This command is similar to the Batch but besides, it allows specifying Nodes that execute the
batch. This implies that the command is typically used at broadcast. This command is not implemented
at the [C] device.

Request

NADR PNUM PCMD HWPID 0 … 29 30 … n

NADR 0x02 0x0B ? SelectedNodes Requests 0

SelectedNodes See identically named field at Send Selective command.
Requests See identically named field at Batch command.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.12.1 Source code support

typedef struct
{
 uns8 SelectedNodes[30];
 uns8 Requests[DPA_MAX_DATA_LENGTH - 30];
} TPerOSSelectiveBatch_Request;

TPerOSSelectiveBatch_Request _DpaMessage.PerOSSelectiveBatch_Request;

 3.4.13 LoadCode

[sync] [comdown] Implemented at [C] and [N] devices. This advanced command allows OTA (over the
air] update of the firmware as it loads a code previously-stored at external EEPROM to the MCU Flash
memory. Then the device is reset. External EEPROM can store more code images at one time. When
storing the code for upload at the external EEPROM, make sure you do not overwrite another stored
code or IO Setup.

Please note, that there might be a considerable delay before a response is ready because the command
needs to read a larger amount of external EEPROM memory and compute the checksum.

The command can load three types of code:

1. Custom DPA Handler code from the .hex file.

Custom DPA Handler code (but not the optional content of EEPROM and/or external EEPROM

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 42

required by the handler) can be uploaded, updated, or just “switched” “over the air” without the
need to reprogram the device using a hardware programmer.

It is necessary to read the output .hex file containing compiled Custom DPA Handler code to
obtain the code before it can be stored as an image at external EEPROM. The continuous code
block starts from the PIC address CUSTOM_HANDLER_ADDRESS = 0x3A20 and is located up to

address CUSTOM_HANDLER_ADDRESS_END - 1 = 0x3D7F. Because each MCU instruction takes 2

bytes the address inside the .hex file is doubled so the code starts from address 0x7440 at
the .hex file. Please read the Custom DPA Handler Code from .hex File for more details.

The length of the image stored in the external EEPROM must be a multiple of 64 (the used
Flash memory page of MCU is 32 words long) otherwise the result is undefined. The checksum
value is calculated from all the code bytes including unused trailing bytes that fill in the last
64-byte block. We recommend filling in unused trailing bytes by value 0x34FF to get the same
checksum value as IQRF IDE. The initial value of the Fletcher-16 checksum is 0x0001.

If loaded Custom DPA Handler code needs to use the certain content of EEPROM and/or
external EEEPROM memory, then EEPROM and/or EEEPROM peripherals can be used to
prepare the content before the handler is loaded. Disabling former Custom DPA Handler using
Write TR Configuration byte (configuration byte at index 0x5, bit 0) and Restart is highly
recommended (both commands might be the content of one Batch or Acknowledged broadcast
- bits) if old or a new handler use EEPROM and/or EEEPROM peripherals. After a new handler
is loaded it must be then enabled back.

2. IQRF plug-in containing DPA protocol implementation (to perform DPA version change on the
fly), Custom DPA Handler, or IQRF OS patch. The feature is supported starting from IQRF OS
version 3.08D and the corresponding DPA version.

IQRF plug-in file is a text file containing an encrypted code. Only lines of the file that do not start
with character # contain the code. Such lines contain 20 bytes stored by 2 hexadecimal
characters (thus every line contains 40 characters in total). To create a code image for the
external EEPROM from IQRF plug-in file just read all the consequential hexadecimal bytes from
all code lines from the beginning to the end of the file, convert them to the real bytes and store
them in the external EEPROM.

The length of the image stored in the external EEPROM must be multiple of 20. The initial value
of the Fletcher-16 checksum is 0x0003.

Please note that only DPA IQRF plug-in version 2.26 or higher can be loaded.

3. IQRF OS Change File containing IQRF OS and/or DPA update. See chapter IQRF OS Change
and below for more information. Using LoadCode command at TR-7xG transceivers, the special
handler CustomDpaHandler-ChangeIQRFOS.iqrf is not needed anymore.

Request

NADR PNUM PCMD HWPID 0 1 … 2 3 … 4 5 … 6

NADR 0x02 0x0A ? Flags Address Length CheckSum

Flags bit 0 Action:

0 Computes and matches the checksum only without loading code.
1 Same as above plus loads the code into Flash if the checksum matches.

bits 1-2 Code type:
00 Loads Custom DPA Handler from .hex file.
01 Loads IQRF plug-in from .iqrf file.
1x Loads IQRF OS Change File .bin file. This option is available at TR-7xG.

bits 3-7 Reserved, must equal 0.
Address A physical address at external EEPROM memory to load the code image from.

https://en.wikipedia.org/wiki/Intel_HEX

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 43

Length Length of the code image in bytes at the external EEPROM. See the text above. When
IQRF OS Change File .bin file is loaded, then the value must be 0x??55 otherwise the
actual upload will not be performed but device only resets.

CheckSum One’s complement Fletcher-16 checksum of the code image. If the checksum does
not match a checksum of the code stored in external EEPROM then writing the code
to the Flash memory is not performed. See source code examples of the checksum
calculation. For an initial checksum value see the text above. Different initial
checksum values for both types of upload code ensure that code types cannot be
confused.
When IQRF OS Change File .bin file is loaded then this parameter is ignored.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x02 0x8A ? 0 ? Result

Result bit 0

0 An error occurred. The following bits of the result contain the
detail.

1 All conditions are met to load the code if requested. The code will
be loaded if Flags.0 was set at the request.

bits 1-7

0000.000 The checksum at the external EEPROM does not match the
provided checksum in case of .hex/.iqrf upload.

0000.011 Old IQRF OS is not present (old checksum does not match) in
case of .bin upload.

0000.100 The checksum of the IQRF OS Change File in the external
EEPROM does not match in case of .bin upload.

0000.111 IQRF OS change file stored in the external EEPROM has an
unsupported version in case of .bin upload.

other values Reserved.

Error codes
ERROR_FAIL Invalid Flags value.

 3.4.13.1 Source code support

typedef struct
{
 uns8 Flags;
 uns16 Address;
 uns16 Length;
 uns16 CheckSum;
} TPerOSLoadCode_Request;

TPerOSLoadCode_Request _DpaMessage.PerOSLoadCode_Request;

 3.4.14 Test RF Signal

This command tests the RF signal in the same way as FRC command Test RF Signal. The command
is implemented at the [C] device only.

Request

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 44

NADR PNUM PCMD HWPID 0 1 2 … 3

NADR 0x02 0x0C ? Channel RXfilter Time

Channel See the same parameter at Test RF Signal.
RXfilter See the same parameter at Test RF Signal.
Time Time interval to test the signal. The unit is 10 ms.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x02 0x8C ? 0 ? Counter

Counter See output value of Test RF Signal.

 3.4.14.1 Source code support

typedef struct
{
 uns8 Channel;
 uns8 RXfilter;
 uns16 Time;
} TPerOSTestRfSignal_Request;

TPerOSTestRfSignal_Request _DpaMessage.PerOSTestRfSignal_Request;

typedef struct
{
 uns8 Counter;
} TPerOSTestRfSignal_Response;

TPerOSTestRfSignal_Response _DpaMessage.PerOSTestRfSignal_Response;

 3.4.15 Factory Settings

[sync] [comdown] This command is implemented at the [N] device only. It executes the following settings
and actions:

1. Sets RF output power in the configuration to the default and maximum value 7.
2. Sets RF signal filter in the configuration to default value 5.
3. Clears Access Password to the default value. Important - it is not recommended to keep default

(full of zeros) Access Password in the production network as it decreases the overall network
security.

4. Removes bond ([N] restart is included by default except in DSM).

Request

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.16 Indicate

[sync] This command is implemented at the [N] devices only. The command controls the device
indication (by default visual). The indication is usually used during inventory or device localization. By
default, the command uses both (red and green) default IQRF LEDs at (or connected to) the [N].

The default indication behavior can be changed using an Indicate event. The custom indication can be
visual (a light), acoustic (a buzzer), action (a motor), etc.

NADR PNUM PCMD HWPID

NADR 0x02 0x0D ?

https://doc.iqrf.org/IQMESH-Network-deployment/index.html?page=factory-settings.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 45

Request

NADR PNUM PCMD HWPID 0

NADR 0x02 0x07 ? Control

Control bits.0-1 0b00 Indication is switched off.
 0b01 Indication is switched on [*].
 0b10 Indication is on for 1 s [**].
 0b11 Indication is on for 10 s [**].

 [*] The default LED indication will be immediately off at [N] at LP mode. Use
timed indication at LP [N] devices instead.

 [**] During the indication, the [N] is blocked and any network traffic will not be
processed.

 bits.2-7 Reserved.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.4.16.1 Source code support

typedef struct
{
 uns8 Control;
} TPerOSIndicate_Request;

TPerOSIndicate_Request _DpaMessage.PerOSIndicate_Request;

 3.5 EEPROM

PNUM = 0x03

This peripheral controls internal MCU EEPROM memory.

 3.5.1 Peripheral information

PerT PERIPHERAL_TYPE_EEPROM
PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Size in bytes. In the current version of DPA, it equals 192 at [N] device or 64 at [C]
respectively.

Par2 Maximum data block length. In the current version of DPA, it equals 55 bytes.

Actual EEPROM address space starts at address 0x00 at [N] device or 0x80 at [C] devices. There is a
predefined symbol PERIPHERAL_EEPROM_START that equals the actual starting address.

 3.5.2 Read

Reads data from the memory.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x03 0x00 ? Address Length

Address An address to read data from.
Length Length of the data in bytes.

Response

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 46

NADR PNUM PCMD HWPID ErrN DpaValue 0 … Len-1

NADR 0x03 0x80 ? 0 ? PData0 … PDataLen-1

Len Read data length.

Error codes
ERROR_ADDR Data address is out of range.

 3.5.2.1 Source code support

typedef struct
{
 uns8 Address;

 union
 {
 struct
 {
 uns8 Length;
 } Read;
 } ReadWrite;
} TPerMemoryRequest;

TPerMemoryRequest _DpaMessage.MemoryRequest;

 3.5.3 Write

Writes data to the memory.

Request

NADR PNUM PCMD HWPID 0 1 … n+1

NADR 0x03 0x01 ? Address PData0 … PDatan-1

Address An address to write data to.
PData Actual data to be written to the memory.
n Written data length.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_ADDR Data address is out of range.

 3.5.3.1 Source code support

typedef struct
{
 uns8 Address;

 union
 {

#define MEMORY_WRITE_REQUEST_OVERHEAD (sizeof(uns8))
 struct
 {
 uns8 PData[DPA_MAX_DATA_LENGTH - MEMORY_WRITE_REQUEST_OVERHEAD];
 } Write;

 } ReadWrite;
} TPerMemoryRequest;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 47

TPerMemoryRequest _DpaMessage.MemoryRequest;

 3.6 EEEPROM

PNUM = 0x04

This peripheral controls external serial EEPROM memory. If the external serial EEPROM memory is not
accessible or missing, the ERROR_FAIL code is returned. Please note that the part of the external

EEPROM memory space can be used for IO Setup.

 3.6.1 Peripheral information

PerT PERIPHERAL_TYPE_BLOCK_EEPROM

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Memory size in 256 bytes blocks. In the current version of DPA, it equals 0x80 (memory
size is 32 kB). Value 0x00 represents 0x100 thus memory size would be 64 kB.

Par2 Page size in bytes. Non-zero page boundaries must not be exceeded during writing.
When page size is 0 then there is no writing limitation.

 3.6.2 Extended Read

This command allows reading data from the whole physical address space of the external EEPROM.

Request

NADR PNUM PCMD HWPID 0 … 1 2

NADR 0x04 0x02 ? Address Length

Address A physical address to read data from.
Length Length of the data to read in bytes. The allowed range is 0-54 bytes. Reading behind

the maximum address range is undefined.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … Len-1

NADR 0x04 0x82 ? 0 ? PData0 … PDataLen-1

Len Read data length.

Error codes
ERROR_ADDR Starting address is out of range.

ERROR_FAIL Error accessing serial EEPROM chip.

 3.6.2.1 Source code support

typedef struct
{
 uns16 Address;

 union
 {
 struct
 {
 uns8 Length;
 } Read;
 } ReadWrite;
} TPerXMemoryRequest;

TPerXMemoryRequest _DpaMessage.XMemoryRequest;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 48

 3.6.3 Extended Write

This command allows writing data to the address space of the external EEPROM.

Request

NADR PNUM PCMD HWPID 0 … 1 2 … n+2

NADR 0x04 0x03 ? Address Data0 … Datan-1

Address The allowed address range is 0x0000-0x3FFF.
Data Actual data to be written to memory.
n Length of the data to write in bytes. The allowed range is 1-54 bytes.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_ADDR Starting address is out of range.

ERROR_FAIL Error accessing serial EEPROM chip.

 3.6.3.1 Source code support

typedef struct
{
 uns16 Address;

 union
 {
#define XMEMORY_WRITE_REQUEST_OVERHEAD (sizeof(uns16))

 struct
 {
 uns8 PData[DPA_MAX_DATA_LENGTH - XMEMORY_WRITE_REQUEST_OVERHEAD];
 } Write;

 } ReadWrite;
} TPerXMemoryRequest;

TPerXMemoryRequest _DpaMessage.XMemoryRequest;

 3.7 RAM

PNUM = 0x05

This peripheral controls a block of internal MCU RAM. The address space of the peripheral occupies
the whole bank 12 of the MCU RAM and can be accessed by an array variable PeripheralRam from
Custom DPA Handler code.

 3.7.1 Peripheral information

PerT PERIPHERAL_TYPE_RAM

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Size in bytes. In the current version of DPA, it equals 48.
Par2 Maximum data block length. In the current version of DPA, it equals 48.

 3.7.2 Read & Write

See EEPROM.

 3.7.2.1 Source code support

bank12 uns8 PeripheralRam[PERIPHERAL_RAM_LENGTH] @ 0x620;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 49

 3.7.3 Read Any

This command can read any addressable memory. The command is same as EEEPROM extended
Read except PNUM = 0x05 and PCMD = 0x0F.

 3.8 SPI (Slave)

This peripheral (formerly available only at [N] without interface) is depreciated. See CustomDpaHandler-
UserPeripheral-SPIslave for the implementation that mimics the former embedded SPI peripheral
behavior.

 3.9 LED

PNUM = 0x06 or 0x07 for standard red respectively green LED at IQRF TR module.

Please note that the LP [N] regularly enters a sleep mode in LP-RX mode when waiting for a packet so
the LEDs are switched off. To keep the LED on for some time use LED request together with IO Set
request with a delay. Both requests can be stored in one Batch request so the packet will not be received
after the LED command.

 3.9.1 Peripheral information

PerT PERIPHERAL_TYPE_LED

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 LED_COLOR_* where * specifies one of the predefined color constants.

Par2 Not used

 3.9.2 Set

Controls the state of the LED peripheral.

Request

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 OnOff ?

OnOff 0x01 to switch LED on, 0x00 to switch LED off

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.9.3 Pulse

Generates one LED pulse using IQRF OS function pulseLEDx.

Request

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 3 ?

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.9.4 Flashing

Enables continuous LED flashing using IQRF OS function pulsingLEDx.

Request

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-SPIslave.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-SPIslave.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=pulseledr.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=pulsingledr.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 50

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 4 ?

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.10 IO

PNUM = 0x09

The peripheral is not available at the [C]. It controls the IO pins of the MCU. Please note that the pins
used by an internal IQRF TR module circuitry cannot be used and their control by this peripheral is
blocked. See a corresponding IQRF TR module datasheet for the IO pins that are available.

 3.10.1 Peripheral information

PerT PERIPHERAL_TYPE_IO

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Bitmask specifying supported MCU ports (b0=PORTA, b1=PORTB, …, b7=PORTH)
Par2 Not used

 3.10.2 Direction

This command sets the direction of the individual IO pins of the individual ports. Additionally, the same
command can be used to set up weak pull-ups at the pins where available. See the datasheet of the
PIC MCU for a description of IO ports.

The correctness of the embedded subcommands (port + mask + value) is not checked before but during
their execution. If an error is detected during the execution of the subcommands the execution is
aborted. If the invalid port number is specified the ERROR_DATA is returned. If the length of the very last

subcommand is not 3 bytes, the error is not returned.

Request

NADR PNUM PCMD HWPID 0 1 2 … n × 3 n × 3 + 1 n × 3 + 2

NADR 0x09 0x00 ? Port0 Mask0 Value0 … Portn Maskn Valuen

n ∈ [0,17] Number of subcommands minus 1.
Port a. Specifies port to setup a direction to. 0x00=TRISA, 0x01=TRISB, …(predefined

symbols PNUM_IO_TRISx) or
b. Specifies port to setup a pull-up. 0x11=WPUB (predefined symbols
PNUM_IO_WPUx)

Mask Masks pins of the port.
Value a. Actual direction bits for the masked pins. 0=output, 1=input., … or
 b. Pull-up state. 0=disabled, 1=enabled.

Error codes
ERROR_DATA Invalid Port value.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

 3.10.2.1 Source code support

typedef struct
{
 uns8 Port;
 uns8 Mask;
 uns8 Value;
} TPerIOTriplet;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 51

typedef union
{
 TPerIOTriplet Triplets[DPA_MAX_DATA_LENGTH / sizeof(TPerIOTriplet)];
} TPerIoDirectionAndSet_Request;

TPerIoDirectionAndSet_Request _DpaMessage.PerIoDirectionAndSet_Request;

 3.10.3 Set

[sync] This command sets the output state of the IO pins. It also allows inserting an active waiting
delay between IO pins settings. This feature can be used to generate arbitrary time-defined signals on
the IO pins of the MCU. During the active waiting, the device is blocked and any network traffic will not
be processed.

This command is executed after the DPA Request is sent back to the device that sent the original DPA
IO Set request. The correctness of the embedded triplet is not checked before but during their execution.
Therefore, if an invalid port is specified an error code is not returned inside DPA Request but the rest of
the request execution is skipped. Also when the length of the very last tripletn is not 3 bytes, the
preceding commands are executed and the error is not returned.

Request

NADR PNUM PCMD HWPID 0 1 2 … n × 3 n × 3 + 1 n × 3 + 2

NADR 0x09 0x01 ? triplet0 … tripletn

n ∈ [0,17] Number of triplets minus 1.
triplet There are 2 types of 3-byte triplets (subcommands) allowed:

a. Setting an output value
port Specifies the port to set up an output state. 0=PORTA, 1=PORTB, … (predefined

symbols PNUM_IO_PORTx)
 mask Masks pins of the port to setup.
 value Actual output bit value for the masked pins.

b. Delay
0xFF Specifies a delay command (predefined symbol PNUM_IO_DELAY).

 delayL Lower byte of the 2-byte delay value, unit is 1 ms.
 delayH Higher byte of the 2-byte delay value, unit is 1 ms.

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Example 1

The setting of PORTA.0 and PORTC.2 as output, PORTC.3 as input.

• Request
NADR=0x0001, PNUM=0x09, PCMD=0x00, HWPID=0xFFFF, PData={0x00(PORTA), 0x01(bit0=1),
0x00(bit0=output)} {0x02(PORTC), 0x0C(bit2=1, bit3=1), 0x08(bit2=output, bit3=input)}

• Response
NADR=0x0001, PNUM=0x09, PCMD=0x80, HWPID=0xABCD, PData={00}(No error), {0x07}(DPA Value)

Example 2

Set PORTA.0=1, PORTC.2=1, then wait for 300 ms, set PORTA.0=0.

• Request
NADR=0x0001, PNUM=0x09, PCMD=0x01, HWPID=0xFFFF, PData={0x00(PORTA), 0x01(bit0=1), 0x01(bit0=1)}
{0x02(PORTC), 0x04(bit2=1), 0x04(bit2=1)} {0xFF(delay), 0x2C (low byte of 300), 0x01(high byte of 300)} {0x00(PORTA),
0x01(bit0=1), 0x00(bit0=0)}

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 52

• Response
NADR=0x0001, PNUM=0x09, PCMD=0x81, HWPID=0xABCD, PData={00}(No error), {0x07}(DPA Value)

 3.10.3.1 Source code support

typedef struct
{
 uns8 Port;
 uns8 Mask;
 uns8 Value;
} TPerIOTriplet;

typedef struct
{
 uns8 Header; // == PNUM_IO_DELAY
 uns16 Delay;
} TPerIODelay;

typedef union
{
 TPerIOTriplet Triplets[DPA_MAX_DATA_LENGTH / sizeof(TPerIOTriplet)];
 TPerIODelay Delays[DPA_MAX_DATA_LENGTH / sizeof(TPerIODelay)];
} TPerIoDirectionAndSet_Request;

TPerIoDirectionAndSet_Request _DpaMessage.PerIoDirectionAndSet_Request;

 3.10.4 Get

This command is used to read the input state of all supported MCU ports (PORTx).

Request

NADR PNUM PCMD HWPID

NADR 0x09 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … n

NADR 0x09 0x82 ? 0 ? Port data

Port data Array of bytes representing the state of port PORTA, PORTB, …, ending with the last

supported MCU port.

 3.11 Thermometer

PNUM = 0x0A for standard on-board thermometer peripheral

 3.11.1 Peripheral information

PerT PERIPHERAL_TYPE_THERMOMETER
PerTE PERIPHERAL_TYPE_READ
Par1 Not used
Par2 Not used

 3.11.2 Read

Reads on-board thermometer sensor value.

Request

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 53

NADR PNUM PCMD HWPID

NADR 0x0A 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2

NADR 0x0A 0x80 ? 0 ? IntegerValue SixteenthValue

IntegerValue Temperature in °C, integer part, not rounded.

See the return value of the getTemperature IQRF OS function. If the temperature
sensor is not installed (see TR Configuration) then the returned value is 0x80 = -
128 °C.

SixteenthValue Complete 12 bit value of the temperature in 1/16 = 0.0625 °C units with 0.5 °C
resolution. See the param3 output value of the getTemperature IQRF OS function. If
the temperature sensor is not installed the value is undefined.

 3.11.2.1 Source code support

typedef struct
{
 int8 IntegerValue;
 int16 SixteenthValue;
} TPerThermometerRead_Response;

TPerThermometerRead_Response _DpaMessage.PerThermometerRead_Response;

 3.12 PWM

This peripheral (formerly available at demo version only) is depreciated. See UserPeripheral-PWM for
using PWM.

 3.13 UART

PNUM = 0x0C for embedded UART peripheral

The peripheral is not available at the [C] and at [N] supporting an interface. The size of both TX and RX
buffers is 64 bytes.

When UART Peripheral is enabled at the [N] configuration then the UART is automatically opened by
the DPA shortly before the Init event is raised. The baud rate is set in the configuration. If this behavior
is not intended then the UART can be closed or opened with a different baud rate immediately in the Init
event or later as needed.

The usage of the peripheral is limited in LP [Ns] because they regularly sleep in its main receiving loop.
The peripheral works only when the device does not sleep or during a time defined by a ReadTimeout
parameter of a Write & Read command. Please see the details below.

PIC HW UART peripheral interrupts can be handled at the Custom DPA Handler Interrupt event unless
the DPA UART peripheral is not open or DPA UART Interface is not used.

 3.13.1 Peripheral information

PerT PERIPHERAL_TYPE_UART
PerTE PERIPHERAL_TYPE_READ_WRITE
Par1 Maximum data block length for reading and writing. Currently, it equals 55 bytes.
Par2 Not used

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=gettemperature.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 54

 3.13.2 Open

This command opens the UART peripheral at a specified baud rate (predefined symbols DpaBaud_xxx

can be used in the code) and discards internal read and write buffers. The size of the read and write
buffers is 64 bytes.

Request

NADR PNUM PCMD HWPID 0

NADR 0x0C 0x00 ? BaudRate

BaudRate specifies baud rate:

• 0x00   1 200 Baud

• 0x01   2 400 Baud

• 0x02   4 800 Baud

• 0x03   9 600 Baud

• 0x04  19 200 Baud

• 0x05  38 400 Baud

• 0x06  57 600 Baud

• 0x07 115 200 Baud

• 0x08 230 400 Baud

Response

The general response to writing request with STATUS_NO_ERROR Error code.

Error codes
ERROR_DATA Invalid BaudRate value.

Example 1

Open UART for communication with 9 600 baud rate:

• DPA Request (master → slave)

NADR=0x0001, PNUM=0x0C, PCMD=0x00, HWPID=0xFFFF, PData={0x03}(9 600 Baud)

• DPA Response (slave → master)

NADR=0x0001, PNUM=0x0C, PCMD=0x80, HWPID=0xABCD, PData={0x00}(No error), {0x07}(DPA Value)

 3.13.2.1 Source code support

typedef struct
{
 uns8 BaudRate;
} TPerUartOpen_Request;

TPerUartOpen_Request _DpaMessage.PerUartOpen_Request;

 3.13.3 Close

Closes UART peripheral.

Request

NADR PNUM PCMD HWPID

NADR 0x0C 0x01 ?

Response

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 55

The general response to writing request with STATUS_NO_ERROR Error code.

 3.13.4 Write & Read

Writes and/or reads data to/from UART peripheral. If UART is not open, the request fails with
ERROR_FAIL.

Request

NADR PNUM PCMD HWPID 0 1 … n

NADR 0x0C 0x02 ? ReadTimeout WrittenData

ReadTimeout Specifies timeout in 10 ms unit to wait for data to be read after data is (optionally) written.

0xFF specifies that no data should be read.
WrittenData Optional data to be written to the UART TX buffer.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … n-1

NADR 0x0C 0x82 ? 0 ? ReadData

ReadData Optional data read from UART RX buffer if the reading was requested and data is

available. Please note that the internal buffer limits a maximum number of bytes to
PERIPHERAL_UART_MAX_DATA_LENGTH.

Error codes
ERROR_FAIL UART peripheral is not open.

Example 1

Write three bytes (0x00, 0x01 and 0x02) to UART, no reading:
• DPA Request (master → slave)

NADR=0x0001, PNUM=0x0C, PCMD=0x02, HWPID=0xFFFF, PData={0xff}(No reading)

{0x00,0x01,0x02}(written data)

• DPA Response (slave → master)

NADR=0x0001, PNUM=0x0C, PCMD=0x82, HWPID=0xABCD, PData={0x00}(No error), {0x07}(DPA Value)

Example 2

Write three bytes (0x00, 0x01, and 0x02) to UART, read 4 bytes after 10 ms:

• DPA Request (master → slave)

NADR=0x0001, PNUM=0x0C, PCMD=0x02, HWPID=0xFFFF, PData={0x01}(10 ms timeout) ,
{0x00,0x01,0x02}(written data)

• DPA Response (slave → master)
NADR=0x0001, PNUM=0x0C, PCMD=0x82, HWPID=0xABCD,
PData={0x00}(No error),{0x07}(DPA Value),{0xaa,0xbb,x0cc,0xdd}(read data)

 3.13.4.1 Source code support

typedef struct
{
 uns8 ReadTimeout;
 uns8 WrittenData[DPA_MAX_DATA_LENGTH - sizeof(uns8)];
} TPerUartWriteRead_Request;

TPerUartWriteRead_Request _DpaMessage.PerUartWriteRead_Request;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 56

 3.13.5 Clear & Write & Read

Same as Write & Read from above except it clears the UART RX buffer at the start and then it executes
write and read. Also PCMD = 0x03.

 3.14 FRC

PNUM = 0x0D for embedded FRC peripheral.

The peripheral is implemented at the [C] devices only and it is always enabled there regardless of the
configuration settings. The peripheral is always disabled at the [N] device.

 3.14.1 Peripheral information

PerT PERIPHERAL_TYPE_FRC
PerTE PERIPHERAL_TYPE_READ_WRITE
Par1 Length of FRC data returned by Send command.
Par2 Not used

 3.14.2 Send

This command starts the Fast Response Command (FRC) process supported by IQRF OS. It allows
quick and using only one request to collect the same type of information (data length) from multiple
Nodes in the network. The type of the collected information is specified by a byte called the FRC
command. Currently, IQRF OS allows collecting either 2 bits from all (up to 239) Nodes, 1 byte from up
to 63 Nodes (having logical addresses 1-63), 2 bytes from up to 31 Nodes (having logical addresses 1-
31), or 4 bytes from up to 15 Nodes (having logical addresses 1-15). The type of collected data is
specified by the FRC command value:

Type of collected data FRC Command interval Reserved interval User interval

2 bits 0x00 - 0x7F 0x00 - 0x3F 0x40 - 0x7F
1 byte 0x80 - 0xDF 0x80 - 0xBF 0xC0 - 0xDF
2 bytes 0xE0 - 0xF7 0xE0 - 0xEF 0xF0 - 0xF7
4 bytes 0xF8 - 0xFF 0xF8 - 0xFB 0xFC - 0xFF

When 2 bits are collected, then the 1st bits from the Nodes are stored in the bytes of index 0-29 of the
output buffer, 2nd bits from the Nodes are stored in the bytes of index 32-61.

When 1 byte is collected then bytes from each [N] (1-63) are stored in bytes 1-63 of the output buffer.

When 2 bytes are collected then byte pairs for each [N] (1-31) are stored in bytes 2-63 of the output
buffer.

When 4 bytes are collected then byte foursomes for each [N] (1-15) are stored in bytes 4-63 of the
output buffer.

For more information see IQRF OS manuals. If the [N] does not return an FRC value for some reason,
then either returned bits or bytes are equal to 0. This is why it is necessary to code the zero return value
into a non-zero one.

The time when the response is delivered depends on the type of the FRC command and used RF mode.
Consult IQRF OS guides for the response time calculation and the IQMESH Timing Calculator.

Request

NADR PNUM PCMD HWPID 0 1 … n

NADR 0x0D 0x00 ? FrcCommand UserData

FrcCommand Specifies data to be collected.

https://doc.iqrf.org/IQMESH-Network-deployment/index.html?page=fast-response-command-frc.html
https://doc.iqrf.org/DpaTechGuide/misc/IqMeshTiming.htm

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 57

UserData User data that are available at IQRF OS array variable
DataOutBeforeResponseFRC at FRC Value event. The length n is from 2 to
30 bytes.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 … n

NADR 0x0D 0x80 ? 0 ? Status FrcData

Status Return code of the sendFRC IQRF OS function (typically number of responding [Ns]).

See IQRF OS documentation for more information.
FrcData Data collected from the Nodes. Because the current version of DPA cannot transfer the

whole FRC output buffer at once (currently only up to 55 bytes), the remaining bytes of
the buffer can be read by the next described Extra result command.

 3.14.2.1 Source code support

typedef struct
{
 uns8 FrcCommand;
 uns8 UserData[30];
} TPerFrcSend_Request;

TPerFrcSend_Request _DpaMessage.PerFrcSend_Request;

typedef struct
{
 uns8 Status;
 uns8 FrcData[DPA_MAX_DATA_LENGTH - sizeof(uns8)];
} TPerFrcSend_Response;

TPerFrcSend_Response _DpaMessage.PerFrcSend_Response;

 3.14.3 Extra result

Reads remaining bytes of the FRC result, so the total number of bytes obtained by both commands will
be a total of 64. It is needed to call this command immediately after the FRC Send command to preserve
previously collected FRC data.

Request

NADR PNUM PCMD HWPID

NADR 0x0D 0x01 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 … n

NADR 0x0D 0x81 ? 0 ? FrcData

FrcData Remaining FRC data that could not be read by FRC Send command because of DPA

data buffer size limitations.

 3.14.4 Send Selective

Similar to Send but allows to specify a set of Nodes that will receive the FRC command and return FRC
data. Together with Acknowledged broadcast - bits it can be then used to execute a DPA Request at
selected Nodes only and get the DPA Confirmation plus one data bit from selected Nodes. Both DPA
Request and DPA Response have the same structure as Send except the SelectedNodes field. Also,
the length of the UserData field is limited to 25 bytes. When 1 byte or 2 bytes are collected then results
from all selected Nodes are adjacent, so there are no gaps filled with 0s for unselected Nodes (unlike

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=sendfrc.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 58

Send command). IQRF OS function amIRecipientOfFRC can be used at [N] side to find out if the result
value is to be returned.

Request

NADR PNUM PCMD HWPID 0 1 … 30 31 … n

NADR 0x0D 0x02 ? FrcCommand SelectedNodes UserData

FrcCommand Specifies data to be collected.
SelectedNodes Specifies a bitmap with selected Nodes. Bit1 of the 1st byte of the bitmap

represents [N] with address 1, bit2 of the 1st byte of the bitmap represents [N]
with address 2, …, bit7 of the 30th byte of the bitmaps represents Nodes with
address 239.

UserData User data that are available at IQRF OS array variable
DataOutBeforeResponseFRC at FRC Value event. The length of the data is
from 2 to 25 bytes.

Response

See Send DPA Request.

 3.14.4.1 Source code support

typedef struct
{
 uns8 FrcCommand;
 uns8 SelectedNodes[30];
 uns8 UserData[25];
} TPerFrcSendSelective_Request;

TPerFrcSendSelective_Request _DpaMessage.PerFrcSendSelective_Request;

 3.14.5 Set FRC Params

Sets global FRC parameters.

Request

NADR PNUM PCMD HWPID 0

NADR 0x0D 0x03 ? FrcParams

FrcParams Value corresponding to the parameter of the setFRCparams macro defined at

IQRF-macros.h. See IQRF OS documentation for more details.

bit.0-2 Reserved
bit.3 If set, then so-called offline FRC is performed. Offline FRC is missing an

individual FRC phase and can be used only with Beaming sensors and
repeaters that aggregate data from Beaming sensors. The bit is automatically
reset after the FRC is performed or after the startup.

bit.4-6 Specifies FRC response time i.e. a maximum time reserved for preparing return
FRC value. See _FRC_RESPONSE_TIME_??_MS constants. The setting is
persistent till the next startup.

bit.7 Reserved
Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x0D 0x83 ? 0 ? FrcParams

FrcParams Previous FrcParams value.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=amirecipientoffrc.html
https://doc.iqrf.org/DpaTechGuide/430/examples/IQRF-macros.h.html
https://doc.iqrf.org/IQRF-Standards/StandardSensor/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 59

 3.14.5.1 Source code support

typedef struct
{
 uns8 FrcParams;
} TPerFrcSetParams_RequestResponse;

TPerFrcSetParams_RequestResponse _DpaMessage.PerFrcSetParams_RequestResponse;

 3.14.6 Embedded FRC Commands

There are a few embedded FRC commands. The user can implement a custom FRC command too.
See User FRC Codes intervals for allowed custom FRC command values and FrcValue event.

All embedded FRC commands prepare returned FRC values within the shortest predefined FRC
response time of 40 ms (corresponds to _FRC_RESPONSE_TIME_40_MS constant). Only in the case of

Memory read and Memory read plus 1 command the FRC response time depends on the DPA Request
that is specified by the user and executed before the FRC value is returned. Event FrcResponseTime
is not implemented for embedded FRC commands, therefore, FRC response time returns 0xFF for them.

 3.14.6.1 Ping

FRC_Ping = 0x00

Collects bits. This command is used for “pinging” [Ns] by observing bit.0 of the returned value.

 3.14.6.2 Acknowledged broadcast - bits

FRC_AcknowledgedBroadcastBits = 0x02

This command except for collecting bits allows executing DPA Request stored at FRC user data after
the FRC result is sent back [sync]. When the Send Selective request is used, then the DPA Request is
executed at selected Nodes only.

Input FCR user data has the following content. Please note that DPA does not check the correct content
or length of FRC user data (except maximum FRC user data length of 30 bytes).

0 1 2 3 … 4 5 … length - 1

Length PNUM PCMD HWPID PData

Length Total length of FRC user data containing the DPA Request.
PNUM Peripheral number of executing DPA Request at.
PCMD Peripheral command.
HWPID HWPD of the DPA Request.
PData Optional DPA Request Data.

DPA Request is executed only when HWPID matches the HWPID of the device or HWPID_DoNotCheck
is specified. In this case, also, the FrcValue event is raised to allow setting resulting FRC bit.1 by the
user. The sender’s address of the embedded DPA Request equals 0x00 ([C] address) and the
addressee’s address is 0xFF (broadcast address).

Returned FRC value bits:

bit.0 bit.1 Description

0 0 The [N] device did not respond to the FRC command at all.

0 1 HWPID did not match the HWPID of the device.

1 x HWPID matches the HWPID of the device. Bit.1 can be set by the FrcValue
event. In the end, the DPA Request is executed.

Example of FRC user data:

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 60

This example will pulse both LEDs after the FRC is collected. To pulse both LEDs by one request a
Batch request is used to package individual 2 LED pulse requests into one request.

16{Length}, 2{PNUM=OS}, 5{PCMD=Batch}, 0xffff{HWPID}, [5{LED Request length},7{PNUM=LEDG},3{PCMD=PulseLED},

0xffff{HWPID}, 5{ LED Request length },6{ PNUM=LEDR},3{ PCMD=PulseLED }, 0xffff{HWPID}, 0{End of Batch}] {PData=Batch

PData}

 3.14.6.3 Prebonded alive

FRC_PrebondedAlive = 0x03

Collects bits. This command addresses prebonded [Ns] although they all have the same IQMESH
temporary address 0xFE. The command assigns (ideally) a unique and imaginary address to each
prebonded [N] within the RF reach of the existing network. The address is deterministically computed
from the Node’s unique MID and a non-zero parameter NodeSeed. The result of this FRC command is
a bitmap (1st half of the result containing the bits #0) of the living prebonded [Ns]. The address can be
later used with the same NodeSeed value at an FRC command Prebonded memory read plus 1 to read
Nodes’ MIDs for a subsequent [N] authorization that gives the [Ns] the final unique network addresses.
It is necessary to use a different NodeSeed between every use of this FRC command to avoid possible
duplication of the generated imaginary [N] addresses.

FRC user data has the following format:

0 1

NodeSeed 0

NodeSeed Non-zero value used to generate (ideally) unique and imaginary addresses.

 3.14.6.4 Supply voltage

FRC_SupplyVoltage = 0x04

Collects bits. Returned bits classify an actual supply voltage value into one of three important supply
voltage ranges. In general, FRC bit.0 indicates that the supply voltage is out of the optimal
recommended range.

Returned FRC value bits:

bit.0 bit.1 Supply voltage [V] Note

1 0 < 2.97 undervoltage

0 1 >= 2.97 and < 3.39 optimal voltage

1 1 >= 3.39 overvoltage

 3.14.6.5 Prebonded memory compare

FRC_PrebondedMemoryCompare2B = 0x05

Collects bits. It returns information whether 2 bytes read from the specified memory address of the
prebonded [N] after a provided DPA Request is executed to satisfy the specified condition. Similar to
Prebonded memory read plus 1 this command must be also run after Prebonded alive was executed.

Returned FRC value bits:

bit.0 bit.1 Description

0 0 The [N] device did not respond to the FRC command at all.

1 0 The condition was not met.

0 1 The condition was met.

1 1 The FRC command is not supported because of the older DPA version.

Make sure to always execute Prebonded alive FRC just before this FRC
command in case the network might contain [Ns] with the older DPA
version to ensure the returned FRC bits is 0b11. Otherwise, the return
value is not defined.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 61

FRC user data has the following format:

0 1 3 4 … 5 6 … n

NodeSeed 0 Flags Value MemoryRead

NodeSeed Please see the same field at Prebonded memory read plus 1.
Flags bit.0 Specifies the condition between 2 bytes provided by DPA Request at the

specified address and Value field.
 0: 2 bytes must equal the 2 bytes of the Value field.

1: 2 bytes (unsigned integer) must be greater than or equal to the 2 bytes of the Value
field.
bits.1-7 Reserved.

Value Specify 2 bytes value that is compared with the 2 bytes provided by the DPA Request.
MemoryRead Please see the same field at Prebonded memory read plus 1.

 3.14.6.6 Temperature

FRC_Temperature = 0x80

Collects bytes. The resulting byte equals the temperature value read by the getTemperature IQRF OS
function. If the resulting temperature is 0°C, which would normally equal 0, then a fixed value 0x7F is
returned instead. This value substitution makes it possible to distinguish between devices reporting 0°C
and devices not reporting at all. The device would normally never return a temperature corresponding
to the value 0x7F because +127°C is out of the working temperature range.

 3.14.6.7 Acknowledged broadcast - bytes

FRC_AcknowledgedBroadcastBytes = 0x81

Collects bytes. The resulting byte equals normally the same temperature value as the Read temperature
command, but if this FRC command is caught by the FrcValue event and a nonzero value is stored at
responseFRCvalue then this value is returned instead of temperature. FRC user data also stores DPA
Request to execute after data bytes are collected in the same way as the Acknowledged broadcast -
bits FRC command does.

 3.14.6.8 Memory read

FRC_MemoryRead = 0x82

Collects bytes. A resulting byte is read from the specified memory address after a provided DPA Request
is executed. This allows getting one byte from any memory location (RAM, EEPROM and EEEPROM
peripherals, Flash, MCU register, etc.). As the returned byte must not equal 0 there is also a Memory
read plus 1 FRC command available.

Input FCR user data has the following content. Please note that DPA does not check the correct content
or length of FRC user data. A batch request is not allowed to be a DPA Request being executed.
Specified DPA Request is executed with an HWPID the [N] has.

0 … 1 2 3 4 5 … 6 - Length

Memory address PNUM PCMD Length PData

Memory address Memory address to read the byte from.
PNUM Peripheral number of executing DPA Request at.
PCMD Peripheral command.
Length Length of the optional DPA Request data.
PData Optional DPA Request Data.

Example 1

This example reads the OS version. OS Read DPA Request will be executed and then a byte from
_DpaMessage.PerOSRead_Response.OsVersion variable (the request stores the result/response
there) will be returned. The actual address of this byte is 0x4A4. See .h or .var files for details.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 62

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x4A4
PNUM = PNUM_OS = 0x02
CMD = CMD_OS_READ = 0x00
Length = 0 = No data bytes
PData none

Example 2

This example reads the value of the IQRF OS lastRSSI variable. Dummy OS Read_Get DPA Request
will be executed and then a byte from the lastRSSI variable will be returned. The actual address of this
variable is 0x5B6. Open a generated .var file of any IQRF compiled project to find out an address of a
system variable.

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x5B6
PNUM = PNUM_OS = 0x02
CMD = CMD_OS_READ = 0x00
Length = 0 = No data bytes
PData none

Example 3

This example reads a lower byte of the HWPID version from more Nodes at once. Peripheral
enumeration DPA Request is executed and the result byte is read. Address 0x4A9 points to the lower
byte of HWPID. Use an address from range 0x4A7 to 0x4AA to read any byte of HWPID or HWPID
version respectively.

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x4A9
PNUM = PNUM_ENUMERATION = 0xFF
CMD = CMD_GET_PER_INFO = 0x3F
Length = 0 = No data bytes
PData none

Example 4

This example returns a supply voltage level using an embedded OS Read command. See
getSupplyVoltage at IQRF OS Reference Guide for the format of the return value.

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x4A9
PNUM = PNUM_OS = 0x02
CMD = CMD_OS_READ = 0x00
Length = 0 = No data bytes
PData none

 3.14.6.9 Memory read plus 1

FRC_MemoryReadPlus1 = 0x83

Same as Memory read but 1 is added to the returned byte to prevent returning 0. This means that this
FRC command cannot return the 0xFF value.

Example 1

This example returns byte+1 being read from EEPROM peripheral at address 3. EEPROM Read DPA
Request will be executed and then a byte from _DpaMessage.Response.PData[0] (the request stores
the result/response there) will be returned. The actual address of this byte is 0x4A0. See .h or .var files
for details.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 63

FRC command = FRC_MemoryReadPlus1 = 0x83
Memory address = 0x4A0
PNUM = PNUM_EEPROM = 0x03
CMD = CMD_EEPROM_READ = 0x00
Length = 2 = Two data bytes
PData[0] = 3 = Read from EEPROM address 3
PData[1] = 1 = Read one byte from EEPROM

 3.14.6.10 FRC response time

FRC_FrcResponseTime = 0x84

Collects bytes. This embedded FRC command is used to find out the FRC response time of the specified
user FRC command. This is useful when a network consists of devices with different devices
implementing the same user FRC command but in a different way that might result in different FRC
response times. In this case, it is necessary to specify the maximum FRC response time that has any
[N] from the set of Nodes that will receive the specified FRC command. This FRC command raises the
FrcResponseTime event where a user code returns the time. The returned time value equals the value
of the corresponding _FRC_RESPONSE_TIME_??_MS constant (see IQRF-macros.h) with the lowest bit set

(internally by DPA) to prevent returning zero value. If the specified FRC command is not supported (i.e.
FrcResponseTime event is not handled) returned value is 0xFF.

Input FRC user data has the following format:

0 1

FRCcommand 0

FRCcommand Value of the user FRC command to read FRC response time of.

 3.14.6.11 Test RF Signal

FRC_TestRFsignal = 0x85

Collects bytes. This embedded FRC command tests the RF signal at the given channel using the given
RX filter. The command counts and returns the value of checkRF IQRF OS function calls returning
TRUE during the currently used FRC response time interval. The counter starts initiated with value 1. If
the final counter value is less than 128 (0x80 hexadecimal), the unchanged counter value is returned. If
the final counter value is greater or equal to 128, then the counter value is divided by 128 and the division
byte result with MSB (7th bit) set is returned. So the MSB of the return FRC value is used to find out
whether the resolution is fine (1 count) or coarse (128 counts) respectively.

See the pseudo-code below:

 setRFchannel(DataOutBeforeResponseFRC[0] /* Channel */);
 uns16 counter = 1;
 while (isFrcResponseTime())
 if (checkRF(DataOutBeforeResponseFRC[1] /* RX Filter */))
 counter++;

 if (counter < 0x80)
 return counter;
 else
 return (counter / 0x80) | 0x80;

Input FCR user data has the following content:

0 1

Channel RXfilter

https://doc.iqrf.org/DpaTechGuide/430/examples/IQRF-macros.h.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=checkrf.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 64

Channel The channel to test.
RXfilter RX filter value passed as a parameter to checkRF IQRF OS function. See IQRF OS

documentation for more details.
 Use value 0xFF to get the data from the previous measurement. This can be used to

collect the values measured by all Nodes at the same time by the first use of the
command. Next selective FRC with a properly set bitmap will then return the value from
next up to 63 Nodes. In this case, the shortest FRC response time of 40 ms can be
used, so this procedure ensures the fasted acquisition of the test RF signal data
measured at the same time.

 3.14.6.12 Prebonded memory read plus 1

FRC_PrebondedMemoryRead4BPlus1 = 0xF8

Collects 4 bytes. The command behaves similarly to Memory read plus 1 but it reads 4 bytes from the
specified address of the prebonded [Ns] formerly addressed by the FRC command Prebonded alive.
The 4 bytes are treated as unsigned int32 type value increased by 1 to allow returning a value
0x00000000. Therefore a value 0xFFFFFFFF cannot be read. It is necessary to keep the same
NodeSeed value formerly used with Prebonded alive to use the same imaginary Nodes’ addresses. This
command must be used only as a selective FRC command. The SelectedNodes bitmap equals the
result of the Prebonded alive command. This ensures the same and accessible prebonded [Ns] are
requested to return their bytes. One call of this FRC command can return up to 15 blocks of 4 bytes. If
there are more than 4 bytes to read then just use the Offset parameter increased by 15 from the previous
call (start with value 0). This will return next up to 15 MIDs starting from 16th, 31st, … [N] from the bitmap.

FRC user data has the following format:

0 1 2 … n

NodeSeed Offset MemoryRead

NodeSeed Non-zero value used to generate (ideally) unique and imaginary addresses. Use the

same value as for the previous call of Prebonded alive.
Offset Allows reading next up to 15 MIDs from the addressed [Ns]. Values 0, 15, 30, … are

typically used.
MemoryRead This variable-length field specified memory address to read after the specified DPA

Requests is executed. It has the same format as FRC user data at the Memory read FRC
command. The maximum length is 20 bytes.

 3.14.6.13 Memory read 4 bytes

FRC_MemoryRead4B = 0xFA

Collects 4 bytes. The command is similar to Memory read and Memory read plus 1. The resulting four
bytes are read from the specified memory address after a provided DPA Request is executed.

FRC user data has the following format:

0 1 2 … n

Inc 0 MemoryRead

Inc 0 The original four-byte value is returned.
 1 The original four-byte value is increased by 1 and returned.
 other Reserved
MemoryRead This variable-length field specifies the memory address to read after the specified DPA

Request is executed. It has the same format as FRC user data at the Memory read FRC
command. The maximum length is 20 bytes.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=checkrf.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 65

 4 TR Configuration
TR configuration is stored in the MCU Flash memory. It is necessary to correctly configure the device
before DPA is used for the first time. The configuration can be modified by IQRF IDE using SPI or
RFPGM programming, by DPA Service Mode, or by Read TR Configuration, Write TR Configuration,
and Write TR Configuration byte commands. There are predefined symbols CFGIND_??? having the
address of each configuration byte.

The following table depicts documented configuration items. Other items are reserved or
undocumented. The total size of the configuration block is 32 bytes.

Address Description

0x00 The checksum of the TR Configuration block. See Read TR Configuration for details.

0x01 [**] An array of 32 bits. Each bit enables/disables one of the embedded 32 predefined
peripherals. Peripheral #0 (Coordinator) is represented by bit 0.0, peripheral #31
(currently not used, but reserved) is controlled by bit 3.7. It does not make sense to enable
the peripheral that is not implemented in the currently used device (see Peripheral
enumeration).

0x02 [**]

0x03 [**]

0x04 [**]

0x05 [*] DPA configuration bits #0:

 bit 0 If set, then a Custom DPA handler is called in case of an event. The handler can define
user peripherals, handle messages to embedded peripherals, and add special
user-defined device behavior. If set and the Custom DPA handler is not detected the
device indicates an error state. Find more information at the Custom DPA Handler
chapter.

 bit 1 If set, then DP2P is enabled at [N].

 bit 2 Reserved.

 bit 3 If set, then the [N] does not route packets in the background.

 bit 4 If set, then DPA IO Setup is run at an early stage of the module boot time.

 bit 5 If set, the device receives also peer-to-peer (non-networking) packets and raises the
PeerToPeer event.

 bit 6 If set, then unbonded [N] never enters low power sleep if the button is not pressed.

 bit 7 If the bit is set, then the [C] controls the STD+LP network; otherwise, it controls the STD
network. The bit can only be changed if the network is empty (no [Ns] are bonded)
otherwise the network will stop working.

0x08 RF output power. Valid numbers are 0-7. Setting this item does not have an immediate
effect except these moments:

1. at Startup,
2. after discovery (both at [C] and [N]),
3. at DpaApiSetRfDefaults API and
4. after DP2P communication.

Use the setRFpower IQRF OS function to set the power at runtime.

0x09 RF signal filter. Valid numbers 0-64. Setting this item does not have an immediate effect
except these moments:

1. at Startup,
2. at DpaApiSetRfDefaults API and
3. after DP2P communication.

Also, see API variable RxFilter.

0x0A [*] Timeout for receiving RF packets at LP-RX mode at LP [N]. The unit is one cycle (one
cycle is 46 ms at LP-RX mode). Greater values save energy but might decrease
responsiveness to the master interface DPA Requests and also decrease Idle event
calling frequency. The valid numbers are 1-255. See also API variable LPtoutRF.

0x0B [*] Baud rate of the UART interface or the UART peripheral. Uses the same baud rate coding
as UART Open (i.e. 0x06 = 57 600 Baud)

0x0C A nonzero value specifies an alternative DPA service mode channel.

0x0D DPA configuration bits #1:

 bit 0 If set, then Local FRC reception is enabled at [N].

 bits 1-7 Reserved.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setrfpower.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 66

0x11 Main RF channel A of the main network. Valid numbers depend on the used RF band.
Setting this item does not have an immediate effect on [C] or [N] devices except Startup.
Use the setRFchannel IQRF OS function to change the RF channel at runtime.

When the [N] is bonded using the traditional bonding or the Smart Connect the channel
is automatically inherited from the network member that provided the bonding and then
written to the configuration.

0x12 Same as above but the second B channel.

[*] The device must be restarted for configuration item change to take effect.
[**] Same as [*] but only in the case of _SPI_(Slave)UART embedded peripheral bit.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setrfchannel.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 67

 5 Device Startup
When the device (1) is reset it first optionally goes into (2) RFPGM mode supposed this mode is
(enabled) configured on the OS tab of the TR Configuration dialog box at IQRF IDE. RFPGM mode is
terminated depending on its configuration. RFPGM mode is fully controlled by IQRF OS.

Brown-out Reset (BOR) is enabled at TR-7xD transceivers (BOR is always enabled by IQRF OS and
automatically disabled at sleep at TR-7xG transceivers) and (3) IO Setup is executed if one is enabled.

At the very beginning, it is possible to remotely connect to the device at the so-called (4) DPA Service
Mode (DSM). A special tool e.g. CATS - DPA Service Tool from IQRF IDE is needed to do it. In the DPA
Service Mode, the device can be fully controlled by individual DPA commands regardless of the device
configuration so it gives the possibility to update or fix a corrupted device configuration, find out its
network address, (un)bond it, find out OS information, reprogram the device, etc. The DSMactivated
API variable indicates whether DSM was started during device startup. Upon the DSM exit, the device
is always reset. The device first tries to establish a DSM session at the fixed channel number 0[*] and
then it tries an alternative channel optionally specified at TR Configuration. CATS - DPA Service Tool
must be set to use the same required channel for the DSM session.

[*] Due to local government regulation, devices operating in Israel are distributed with a limitation
for a 916 MHz band and channels from 133 to 140 only. Therefore fixed DSM channel is set to
133. Furthermore, TR-77xy devices are technically limited by the SAW filter for the 868 MHz
band and channels from 45 to 67, therefore the fixed DSM channel is set to 45.

The user interrupt is enabled, so an Interrupt event can be raised if any interrupt source is enabled from
now on.

The bonding or unbonding phase being valid only for [N] devices comes next.

At TR-7xD the bonding or the bond removal (unbonding) at [N] side is initiated and controlled by a
“default“ IQRF button connected between the ground and RB4 MCU pin which is normally available at

IQRF development tools. The default behavior can be modified by the implementation of the Reset event
that is raised during the bonding and/or unbonding phases. To keep the default behavior but with a
custom bonding button, an event BondingButton can be used. See details of the button behavior in the
next chapter. Bonding and unbonding at TR-7xG are controlled via DPA Menu.

Already bonded [N] can be (5) unbonded by a procedure described in the following chapter. If the [N] is
not bonded yet then it can be bonded (6) by a procedure also described in the next chapter. Please note
that the [N] does not have to be configured for a working network RF channel as the channel is
automatically inherited from the network member that provided the bonding and then written to the
configuration. At this point, the [N] device is bonded and ready to work on the network. This is indicated
by a red LED (7).

After that, Init event (8) is raised and Interface is started (9) (in the case of [N] devices only when the
interface is supported).

At (10) if the interface is enabled (always at the [C] device) the device (being always slave interface)
sends the following asynchronous “Reset” DPA Request equal (except PCMD) Peripheral enumeration
response to the interface master. This time the response code is marked by the asynchronous bit
STATUS_ASYNC_RESPONSE.

NADR PNUM PCMD HWPID PData

NADR 0xFF 0x3F ? See DPA Request of Peripheral enumeration

Then the [C] device checks the presence of the connected interface master device during startup. If the
data of the “Reset” response are not collected from the interface by the interface master within 100 ms
then the device assumes that the interface master is not present. When the interface master is not
connected an API variable IFaceMasterNotConnected is set to 1.

https://doc.iqrf.org/IQMESH-Network-deployment/index.html?page=cats-service-tools.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 68

 5.1 Button Handling and LED Indications

Please find below detailed descriptions of the button handling and the LED indication after the device
is reset. They are listed in order of appearance.

The button is ignored (except RFPGM) at TR-7xG because it is controlled via DPA Menu.

 5.1.1 RFPGM

This very first indication is common to both [C] and [N]. The RFPGM indication depends on the RFPGM
settings in the device configuration. If RFPGM is enabled, it starts after the device is reset i.e. before [C]
or [N] default DPA startup.

A. RFPGM is not enabled.
No LED indication.

B. RFPGM at STD mode.

The green LED is on and the red LED flashes slowly.

Reset

RFPGM

DPA Service Mode

Unbonding (Reset event)

Bonding (Reset event)

LED startup indication

Init event

Interface started

“Reset” response

Main Loop

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

IO Setup

(10)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 69

▼ reset 2s 2s
 ██████████████████████████████████ …
 █________________█______________█_ …

C. RFPGM at LP mode.

The green LED flashes quickly.

▼ reset 4 times per second
 █_█_█_█_█_█_█_█_█_█_█_█_█_█_█_█_█_ …
 __________________________________ …

RFPGM is indicated until it is terminated and then the default DPA startup indication starts. It varies for
[C] and [N].

 5.1.2 Node

Both the [N] LED indication and button behavior depend on the [N]’s bond state.

 5.1.2.1 Bonded Node

A. Startup
If the button is not pressed (at TR-7xD) when the [N] starts, [N] pulses the red LED. The [N]
pulses the red LED one more time if [N] has a temporary network address (0xFE).

… ──────── …
… ________ …
… _█_▒____ …

B. Unbonding (valid for TR-7xD)

If the button is already pressed when the [N] starts, then the green LED goes on for 2 seconds
while the button is pressed. If the button is released immediately after the green LED goes out
within the 0.5-second window, the [N] is unbonded and restarted. The unbonding is confirmed
by the red LED for 1 second.

 2s ┊0.5s┊ 1s
 ┐ ┌──────────

… └────────────────────┘ …

… _██████████████████_____________ …
… ______________________█████████_ …

C. Factory settings (valid for TR-7xD)

If the button is not released in the previous case after the green LED goes out, the same pattern
occurs for the second time after 2.5 s. If the button is then released within the 0.5-second window
after the green LED goes out, the factory settings are applied and the [N] is unbonded and
restarted. The process is confirmed by the red LED for 1 second.

 2s 2.5s 2s ┊0.5s┊ 1s

 ┐ ┌─────────
… └───────────────────── … ───────────────────────┘ …

… _██████████████████___ … ___██████████████████____________ …

… ______________________ … _______________________█████████_ …

 5.1.2.2 Unbonded Node

A. Smart Connect
If the button is not pressed, the red LED flashes quickly and the [N] is ready to be bonded using
the Smart Connect process (including the Autonetwork process). If Smart Connect bonding is
executed, it is indicated by the green (TR-7xD) or red (TR-7xF) LED for 0.5 seconds. If the
button is not pressed (while the device operates at LP-RX mode) within approximately 5 hours
then the [N] goes into power-saving deep sleep mode and the red LED stops flashing. From the
deep sleep mode, the [N] can be woken up by the button press.
 0.5s
… ───────── … ──────────── …

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 70

… _________ … _______████_ …
… _█_█_█_█_ … _█_█_█______ …

B. Button Bonding (valid for TR-7xD)
If the button is pressed during Smart Connect bonding (see above), the red LED starts flashing
slowly and the [N] continuously requests bonding using bondRequestAdvanced IQRF OS
function. If bonding is executed, it is indicated by the green LED for 0.5 seconds.

 ─────┐ 0.5s
… └───────────── … ───────── …

… ___________________ … ____████_ …
… _█_█_█_____█_____█_ … __█______ …

C. Factory settings (valid for TR-7xD)

If the button is already pressed when the [N] starts, then after 2.5 s while the button is still
pressed the green LED goes on for 2 seconds while the button is pressed. If the button is
released immediately after the green LED goes out within the 0.5-second window, the factory
settings are applied and the [N] is restarted. The process is confirmed by the red LED for 1
second.

 2.5s 2s ┊0.5s┊ 1s
 ┐ ┌──────────
… └─── … ───────────────────────┘ …
… ____ … ___██████████████████_____________ …
… ____ … ________________________█████████_ …

 5.1.3 Coordinator

After the [C] starts, it always indicates the Interface state.

A. The interface is connected.
… _█_______________________________ …
… _________________________________ …

B. The interface is disconnected.
… _█_█_____________________________ …
… _________________________________ …

 5.1.4 Custom DPA Handler State

The following indication is common to both [C] and [N]. After they start, there is a Custom DPA Handler
availability indication in case the handler is enabled in the configuration.

A. Custom DPA Handler is present and enabled.
No LED indication.

B. Custom DPA Handler is missing though it is enabled.
Red LED is on until the problem is fixed. Please note, that at LP [N] the red LED goes out
periodically during the [N] sleep period.
… _________________________________ …
… ____█████████████████████████████ …

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=bondrequestadvanced.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 71

 6 DPA Menu
DPA Menu is implemented at [N] at TR-7xG transceivers. DPA Menu provides uniform and simple
device control.

It allows you to perform many useful actions (e.g. bonding, unbonding, factory setting, reset,
standby, …). In addition, the menu can be customized and can include user-defined actions. DPA Menu
can be activated in any device state.

The DPA Menu is controlled by the default IQRF button connected to the RB4 and active at LOW. The

indication is made using a standard red LED at RA2 active at HIGH.

The DPA menu is activated by pressing the default IQRF button. Please note that there may be a delay
before the menu is activated as the device may be in the middle of a time-consuming activity (routing,
FRC, discovery, ...). Each menu always contains 9 items. As long as the button is pressed, the menu
items scroll. Each implemented menu item is indicated by a single blink of the red LED. Unimplemented
menu items are indicated by two flashes of the red LED. The time between menu items is 2 seconds. If
the end of the menu is reached and the button remains pressed, three red LED flashes are indicated
every 2 seconds.

The menu item is selected by releasing the IQRF button within 1 second after the menu item is indicated
(by a single blink of the red LED). Some menu items require confirmation. In this case, the red LED will
illuminate for 1 second after the menu item is selected. During this time, the IQRF button must be
pressed again. The red LED will then remain lit for 1 second. To confirm the selection of an item, you
must release the IQRF button within 1 second after the red LED goes off.

When the menu item is successfully selected, the result will be displayed. The OK result is indicated by
the red LED lighting up for 0.5 seconds. In the event of an error, rapid flashing of the red LED is indicated.
In addition, some menu items indicate more detailed information by the further flashing of the red LED.

The following diagrams explain menu navigation and an indication of the result. In the example, the 1st
and Nth menu items are implemented and the 2nd menu item is not implemented.

• Menu item Nth selection:

 ┊ 2s ┊ ┊ 2s … 2s ┊ …

 ┊ <1s ┊ ┊ ┊ <1s ┊ ┊ <1s ┊ ┊0.5s┊ …
 ─┐ ┌── … ─────────
… └─────────────────────────── … ────────┘ …

… __█______________█__█_______ … ____█______ … ██████___ … OK

… __█______________█__█_______ … ____█______ … _█_█…█_█_ … Error

 1 2 N

• Menu item Nth selection with confirmation:

 ┊ 2s ┊ ┊ 2s … 2s ┊ …

 ┊ <1s ┊ ┊ ┊ <1s ┊ ┊ <1s ┊ <1s ┊ 1s ┊ <1s ┊ ┊0.5s┊ …
 ─┐ ┌─────┐ ┌────…──────────
… └─────────────────────────── … ──────────┘ └────────┘ …

… __█______________█__█_______ … ____█_____████████████_______ … ██████___ … OK

… __█______________█__█_______ … ____█_____████████████_______ … _█_█…█_█_ … Error

 1 2 N

 6.1 Menus

There are four types of menus corresponding to the four device states.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 72

 6.1.1 DPA Menu ReadyToBond

► When the device is not bonded to the network.

This DPA Menu is always implemented. This device state is indicated by the flashing of the red LED.
During this flashing, the device is ready to be bonded via Smart Connect, Autonetwork (also using Smart
Connect), or NFC/OTK (e.g. by IQUIP). Some devices might go into sleeping mode if they are not
bonded for an extended period. The 1st menu item for this state allows traditional “button” bonding.

From the Custom DPA Handler code point of view, this menu is handled using predefined Menu events.
See MenuActivated.

 6.1.2 DPA Menu Online

► When the device is bonded or prebonded and is receiving IQMESH network traffic.

This DPA Menu is always implemented. From the Custom DPA Handler code point of view, this menu
is handled via predefined Menu events. See MenuActivated.

 6.1.3 DPA Menu Beaming

► When a typically battery-powered sensor device is most of the time in the low power mode and
periodically transmits (beams) sensor values using IQRF Standard Sensor.

This DPA Menu is optional. From the Custom DPA Handler code point of view, this menu is handled via
a predefined DpaMenu API. See DpaApiMenu.

 6.1.4 DPA Menu Standby

► When the device is in very low power mode during storage or transport.

This DPA Menu is always implemented and available after the Standby menu item is selected. The
menu cannot be customized.

 6.2 DPA Menu Content

General rules:

• The 1st menu item contains the most useful action for the current device state.

• The 2nd menu item is always implemented and allows you to check the status of the device.

• The 7th never-implemented menu item separates the most critical actions at positions 8 and 9.

• Critical actions require confirmation.

Menu Item
Menu

ReadyToBond Online Beaming Standby

1 Bond Request Beaming 1 Connectivity Check 3 Exit Standby

2 State Indication

3 User1a 1 User1b 1 User1c 1 -

4 User2a 1 User2b 1 User2c 1 -

5 Standby 2 -

6 Reset -

7 - - - -

8 Restart 2 Unbond+Restart 2 -

9 Factory Settings+Restart 2 Unbond+Factory Settings+Restart 2 -

Legend:

✓ Selection without confirmation 1 Optional (opt-in) and executed in Custom DPA Handler

✓(✓) Selection with optional confirmation 2 Optionally unimplemented (opt-out)

✓✓ Selection with confirmation 3 Executed in Custom DPA Handler

- Always unimplemented (empty)

The next chapters describe menu items in more detail.

https://www.iqrf.org/product-detail/iqd-nfc-01-iquip
https://doc.iqrf.org/IQRF-Standards/StandardSensor/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 73

 6.2.1 Bond Request

Executes 10 bonding attempts using bondRequestAdvanced IQRF OS function so the total execution
might take up to 10 seconds. Between each attempt the red LED flashes. If the button is pressed again
for at least 1 second, the bonding stops and the device continues in ReadyToBond state after the button
is released.

 6.2.2 Beaming

Starts beaming that must be implemented at Custom DPA Handler. See DPA Menu example.

 6.2.3 Connectivity Check

Executes connectivity check at the beaming state. See DpaApiMenu for the reference implementation.

 6.2.4 Exit Standby

Exits standby state and indicates the new state i.e. the state before the Standby was selected.

 6.2.5 State Indication

A number of the red LED flashes (after the OK indication) indicate the device state:

1× Online and bonded
2× Online and prebonded
3× Beaming
4× Standby
5× ReadyToBond

 6.2.6 User1 and User2

The execution of these user actions must be implemented in the Custom DPA Handler. See DPA Menu
example.

 6.2.7 Standby

Switches the device to low power mode. Custom DPA Handler should implement necessary actions
before and/or after the standby to achieve the lowest possible power consumption. If the menu is
processed using events, the BeforeSleep event is raised before going into standby and the AfterSleep
event is raised after standby respectively.

 6.2.8 Reset

Resets the device. If the menu is processed using events, the Disable Interrupts event is executed first.
After resetting from the Beaming and Online states, the device enters the Online state. Resetting in the
ReadyToBond state preserves the ReadyToBond state.

 6.2.9 Unbond + Restart

Unbonds and restarts the device. Since the internal microcontroller is not reset, it is necessary to disable
all interrupt sources before executing the item. If the menu is processed using events, the Disable
Interrupts event is executed before restart. After device restarts it goes into ReadyToBond state.

 6.2.10 Unbond + Factory Settings + Restart

Same as Unbond + Restart including factory settings.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=bondrequestadvanced.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 74

 7 Autoexec

The Autoexec is depreciated from DPA 4.15 because the embedded UART peripheral is automatically
opened (since DPA 4.11) at the startup supposed it is enabled in the configuration.

 8 IO Setup
IO Setup feature is available at the [N]. It can be used to set up direction, pull-ups, and values of
individual IO pins of the MCU at the very beginning of the device startup. Only DPA peripheral IO
requests can be executed to make sure the device will always enter DPA Service Mode which can be
used to fix an incorrect behavior. Also, every request must use HWPID equal 0xFFFF
(HWPID_DoNotCheck). IO Setup DPA Requests are stored at external EEPROM memory starting from
its physical address IOSETUP_EEEPROM_ADDR = 0x0040; the size of the block is 64 bytes. DPA
Requests are stored next to each other and are structured according to DPA protocol. There is one
exception - the total size of the DPA Request in bytes is stored in the place of a corresponding NADR
(in this case, it is only 1 byte wide, not 2 bytes as normal NADR). 0x00 is stored after the very last DPA
Request to indicate the end of the IO Setup batch. When executing DPA Request a local interface DPA
Notification is not performed although DPA via the interface is enabled. Other events at the user DPA
routine are called as usual.

Important: Updating Custom DPA Handler code using the OTA LoadCode command does not allow
writing external EEPROM content. Therefore, the update of the IO Setup is not possible. It is
recommended to avoid IO Setup when OTA is used.

IO Setup example:

The following example shows the bytes stored in the IO Setup external EEPROM memory space that
will run these 2 commands upon the module reset:

1. Sets PORTB.7 (controls green LED) as output
2. Sets green LED on for 1s and then off for 1s

Actual bytes stored at serial EEPROM from address 0x0040:

 Len PNUM PCMD HWPID PData
1. 0x08, 0x09, 0x00(IO Direction), 0xFFFF, {1,0x80,0x00}(B.7 = output),
2. 0x11, 0x09, 0x01(IO Set), 0xFFFF, {1,0x80,0x80}(B.7 = 1), {0xff,0xe8,0x03}(1s delay),
{1,0x80,0x00}(B.7 = 0), {0xff,0xe8,0x03}(1s delay),
3. 0x00(end of IO Setup)

C code to upload IO Setup example to the external EEPROM:

#define NO_CUSTOM_DPA_HANDLER

#include "IQRF.h"
#include "DPA.h"
#include "DPAcustomHandler.h"

#pragma cdata[__EEESTART + IOSETUP_EEEPROM_ADDR] = \
8, PNUM_IO, CMD_IO_DIRECTION, 0xff, 0xff, \

PNUM_IO_TRISB, 0x80, 0x00, \
17, PNUM_IO, CMD_IO_SET, 0xff, 0xff, \

PNUM_IO_PORTB, 0x80, 0x80, \
PNUM_IO_DELAY, 0xe8, 0x03, \
PNUM_IO_PORTB, 0x80, 0x00, \
PNUM_IO_DELAY, 0xe8, 0x03, \

0

☼ See example code DpaIoSetup.c for more details.

https://doc.iqrf.org/DpaTechGuide/index.html?page=dpa-411.html
https://doc.iqrf.org/DpaTechGuide/430/examples/IQRF.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPA.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPAcustomHandler.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DpaIoSetup.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 75

 9 Custom DPA Handler
Custom DPA handler is an optional user-defined C language routine that can handle various events and
thus implements user peripherals, handles embedded peripherals, provides peripheral virtualization,
adds internal device logic, customizes DPA Menu, and much more. If the custom DPA handler is
implemented it must be enabled in the TR Configuration to receive events.

If the Custom DPA handler is enabled in the TR Configuration but it was not detected (see point 2.
below) then the device indicates an error by constant switching on the red LED and by returning the
ERROR_MISSING_CUSTOM_DPA_HANDLER error code to every DPA Request (except to request to
OS peripheral, to request Get information for more peripherals and to all DPA Requests at DPA service
mode). In this case, the OS peripheral can be used to fix the problem (disable handler and restart the
device or load missing handler already stored in the external EEPROM).

Please respect the following rules when implementing Custom DPA handler:

1. Custom DPA handler must be the first C routine declared as bit CustomDpaHandler() in your

code. It must be located at the fixed address CUSTOM_HANDLER_ADDRESS = 0x3A20 of the MCU Flash

memory.
2. The very first instruction of the handler must be CLRWDT to indicate its presence. To do it just

insert clrwdt(); statement right after the handler header. This statement/instruction is thus executed
at the beginning of every event (except the Interrupt event).

3. There is an 5344 instructions (TR-7xG) or 864 (TR-7xD) long block in the MCU flash memory
reserved for a custom DPA handler in the current version of DPA. See
CUSTOM_HANDLER_ADDRESS_END.

4. “cases:” for unhandled events do not have to be programmed to save memory space and make
the code more readable. Please see Interrupt for an exception from this rule.

5. Variables, as well as function parameters, must be allocated in the standard RAM bank 11 only (48
bytes at range 0x5C0-0x5EF).

6. Variables can be also mapped to the RAM bank 12 that equals the peripheral RAM space (48 bytes
at range 0x620 - 0x64F).

7. Do not use bufferRF, bufferCOM, and bufferAUX at all (except inside events Reset, Init, Idle,

and DisableInterrupts). bufferAUX can be used at the FrcValue event.
8. bufferINFO can be used inside events but not to carry data between events as its content can

change. bufferINFO cannot be used at all when an event is raised during processing IO Set, FRC
Send, Get Peripheral Info, or FRC Extra result as these DPA Requests use bufferINFO internally.

9. Also, do not use userReg0 and userReg1 variables unless you do not call any DPA API function.
10. DPA uses bits 0-1 of the userStatus IQRF OS variable internally. Usage of other userStatus bits is

reserved, therefore their future availability is not guaranteed.
11. Maintain the written code as much speed optimized as possible as the long time spent in the user

code might negatively influence device behavior. Especially Interrupt and Idle events must be
programmed extremely efficiently.

12. Special attention must be paid to the implementation of an Interrupt event. See details in the
dedicated chapter.

13. Do not use timer TMR6 at [C]. Use DpaTicks being internally driven by TMR6 instead.
14. Do not use IQRF OS functions start[Long]Delay and waitDelay (except locally inside of Reset, Init,

Idle, and DisableInterrupts event handlers). Use waitMS or TMR6 (but not at the [C] device) instead.
Also, IQRF OS functions startCapture and captureTicks can be used for timing purposes. See IQRF
OS documentation for existing side effects.

15. Sending and receiving packets by predefined DPA API functions are allowed only at events Reset,
Init, Idle, DisableInterrupts, PeerToPeer, and AfterRouting. It is required to keep the same RF

settings (see setRFpower, setRFchannel, set*mode, etc. IQRF OS functions) that were set at the
beginning of the event upon the event exit.

16. Do not modify the content of IQRF OS variables within the event code. It is required to save their
values and restore them at the event exit.

17. Starting from the Init event an MCU watchdog timer with a 4 s period is enabled. Do not change
WDT settings. Also, make sure to call clrwdt() if needed to prevent WDT reset.

18. If possible, try to avoid executing MCU stack demanding complex requests (e.g. Discovery) from
subroutines to prevent MCU stack overflow. Such overflow results in the (often irregular) HW
device reset.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=startdelay.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=startlongdelay.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=waitdelay.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=waitms.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=startcapture.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=captureticks.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setrfpower.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setrfchannel.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 76

19. Both FSR0 and FSR1 point to the message PData at the Custom DPA Handler entry (except
Interrupt event). This can be used for code optimization.

A Custom DPA handler can be optionally loaded “over the air” into the device. Please see LoadCode.

 9.1 Handler Example

The typical skeleton of the Custom DPA Handler looks like this (see CustomDpaHandler-Template-
Node.c source code example for a complete template for Node):

// Default IQRF include
#include "IQRF.h"

// Uncomment to implement Custom DPA Handler for Coordinator
//#define COORDINATOR_CUSTOM_HANDLER

// Default DPA header
#include "DPA.h"
// Default Custom DPA Handler header
#include "DPAcustomHandler.h"

// Real Custom DPA Handler function
bit CustomDpaHandler ()
{
 // Handler presence mark
 clrwdt();

 // Detect DPA event to handle
 switch (GetDpaEvent())
 {
 case DpaEvent_Interrupt:
 // …
 return Carry;

 // Other events …
 case DpaEvent_Idle:
 // …
 return Carry;

 case DpaEvent_DpaRequest:
 if (IsDpaEnumPeripheralsRequest())
 // Enumerate Peripherals
 {
 // …
 return TRUE;
 }
 else if (IsDpaPeripheralInfoRequest())
 // Get Peripheral Info
 {
 // …
 return TRUE;
 }
 else
 // Peripheral Request
 {
 // …
 return TRUE;
 }
 }

 return FALSE;
}

// Default Custom DPA Handler header
// (2nd include implementing a Code bumper to detect too long code of the handler)

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-Node.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-Node.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/IQRF.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPA.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPAcustomHandler.h.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 77

#include "DPAcustomHandler.h"

 9.2 Events Flow

The following pseudo-codes illustrate the behavior and raising of events at different device types. A
notation [Event] specifies that the Event is raised.

 9.2.1 Coordinator

The pseudo-code applies to the [C] device. For details of the device startup please see a dedicated
chapter.

if IO Setup enabled
 Run IO Setup

DPA Service Mode
[Reset]
[Init]

Send Reset response to Interface
loop
 if DPA Request packet received from Interface
 if [IFaceReceive]
 Return ERROR_IFACE_CUSTOM_HANDLER to Interface
 else
 if [C] is addressed
 if not [ReceiveDpaRequest]
 if embedded peripheral
 Execute embedded DPA peripheral Request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 Send DPA Response to Interface
 [Notification]
 Execute optional [sync] part of the request
 [AfterRouting]
 else
 Wait for the previous routing timeout to finish
 Send DPA Confirmation to Interface
 Transmit DPA Request packet to the network
 Set routing timeout to the real [C]>[N] plus optimistic [N]>[C] routing

 if packet (typically DPA Response) received from the network
 if not system packet
 if not peer to peer packet
 if not same DPA packet was already received last time
 if not [ReceiveDpaResponse]
 Set routing timeout to remaining [N]>[C] routing
 if [C] addressed
 if not [ReceiveDpaRequest]
 if embedded peripheral
 Execute embedded DPA peripheral Request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 [Notification]
 Execute optional [sync] part of the DPA Request
 [AfterRouting]
 else
 Send received packet to Interface
 else
 if peer to peer packet enabled
 [PeerToPeer]
 else
 [Idle]

https://doc.iqrf.org/DpaTechGuide/430/examples/DPAcustomHandler.h.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 78

endloop

 9.2.2 Node

Pseudocode applies to the [N] device. For details about the details of the device startup, see Device
Startup.

 if IO Setup enabled
 Run IO Setup

 DPA Service Mode

┌─────────────────────────────────────┐ TR-7xD
│if the [N] is bonded and not [Reset] │
│ Default unbonding procedure │
└─────────────────────────────────────┘

 while the [N] is not bonded
 if not [Reset]
 Default bonding procedure
┌─────────────────────────────────────┐ TR-7xG
│ DpaMenu(ReadyToBond) │
└─────────────────────────────────────┘
 [Init]

 Send Reset response to Interface
 loop
 if DPA Request packet received from the network
 if not system packet
 if not peer to peer packet
 if not FRC request
 if not [ReceiveDpaRequest]
 if embedded peripheral
 Execute embedded DPA peripheral Request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 if packet was not broadcasted
 Wait for [C]>[N] routing to finish
 Transmit DPA Response back to the network
 [Notification]
 if Interface enabled
 Send DPA Notification to Interface
 Wait for [C]>[N] routing to finish
 Execute optional [sync] part of the DPA Request
 [AfterRouting]
 else
 Wait for [C]>[N] routing to finish
 if LocalFRC and (LocalFRC not enabled or not [VerifyLocalFrc])
 Stop processing FRC
 if not predefined FRC command
 [FrcValue]
 Response FRC value
 else
 if peer to peer packet enabled
 [PeerToPeer]
 else
 [Idle]
┌─────────────────────────────────────┐ TR-7xG
│ DpaMenu(Online) │
└─────────────────────────────────────┘

 if local DPA Request packet received from enabled Interface
 if not [ReceiveDpaRequest]
 if embedded peripheral
 Execute embedded DPA peripheral Request

file:///C:/Users/hynek/Documents/MICRORISC/IQRF/ReadyToBond%23_DPA_Menu_
file:///C:/Users/hynek/Documents/MICRORISC/IQRF/Online%23_DPA_Menu_

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 79

 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 Send DPA Response back to Interface
 [Notification]
 Execute optional [sync] part of the DPA Request
 [AfterRouting]
 endloop

 9.2.3 General events

The next chapters show pseudo-codes illustrating the logic of raising general events at any device where
the described evens make sense.

 9.2.3.1 Interrupt

An interrupt event is raised whenever an MCU interrupt occurs.

if MCU interrupt
 [Interrupt]

 9.2.3.2 Disable Interrupts

Disable interrupts event is raised at Reset, Restart, LoadCode, Run RFPGM, Remove bond, Factory
Settings, and Validate bonds (when [N] is restarted) commands as all of them cause the device to reset
or restart. It is also raised at Reset, Unbond + Restart, and Unbond + Factory Settings + Restart.

if Reset/Restart/LoadCode/Run RFPGM/Remove bond/Factory Settings/(Validate bonds)
 [Disable Interrupts]
 The device will reset or restart

 9.2.3.3 Sleep Events

Sleep events (BeforeSleep and AfterSleep) are raised around precise Sleep command.

if Sleep
 [BeforeSleep]
 Execute sleep
 [AfterSleep]

 9.2.3.4 Menu Events

Menu events MenuActivated, MenuItemSelected, and MenuItemFinalize are raised when menus
ReadyToBond and Online are handled. See referenced chapters and example CustomDpaHandler-
DpaMenu for more details.

 9.3 Events

The following paragraphs describe available events in more detail. Unless otherwise specified then the
return value from the event does not matter. The code fragments are for illustration purposes only.
Please use the C code template and examples distributed with the DPA package instead.

 9.3.1 Interrupt

This event is not raised at [C] devices. The event is called whenever an MCU interrupt occurs. Interrupt
events might be blocked by IQRF OS during packet reception so the event might not be suitable for high
frequency and low jitter interrupts.

Please make sure the following rules are met when implementing an Interrupt event:
1. The time spent handling this event is critical. If there is no interrupt to handle then return

immediately otherwise keep the code as fast as possible.
Make sure the event is the 1st case in the main switch statement at the handler routine. This
ensures that the event is handled as the 1st one.
This event should be handled with an immediate return Carry; even if it is not used by the custom
handler because the Interrupt event is raised on every MCU interrupt and the “empty” return
Carry; handler ensures the shortest possible interrupt routine response time.

2. Only global variables or local ones marked by a keyword static can be used to allow reentrancy.

file://///x220hynek/Users/hynek/Documents/MICRORISC/IQRF/ReadyToBond%23_DPA_Menu_
file://///x220hynek/Users/hynek/Documents/MICRORISC/IQRF/Online%23_DPA_Menu_
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 80

3. Make sure race condition does not occur when accessing those variables at other places.
4. Make sure (inspect .lst file generated by C compiler) compiler does not create any hidden temporary

local variable (occurs when using division, multiplication, or bit shifts) at the event handler code. The
name of such a variable is usually Cnumbercnt. Such hidden variables would cause memory
overwrites and code malfunction.

5. Do not call any OS functions except setINDFx. Use direct reading by FSRx or INDFx registers
instead of calling obsolete and ineffective getINDFx/readFromRAM IQRF OS functions.

6. Do not use any OS variables especially for writing access.
7. All the above rules apply also to any other function being called from the Interrupt event handler

code, although calling any function from the Interrupt event is not recommended because of
additional MCU stack usage that might result in stack overflow and HW device reset.

Example

 case DpaEvent_Interrupt:

 if (!TMR6IF)

 return Carry;

 TMR6IF = FALSE;

// timerOccured is (must be) a global or static variable
 timerOccured = TRUE;

 return Carry;

☼ See example code CustomDpaHandler-Timer.c or CustomDpaHandler-TimerCalibrated.c for more
details.

 9.3.2 Idle

This event is periodically raised when the main loop is waiting for incoming RF (or interface) messages
to handle. The time spent handling this event is critical. When there is no RF signal then the event is
raised in STD mode approximately every 1.0 ms. When there is an RF signal, the time might be up to
2.8 ms.

Note that the frequency at which the event is called depends mainly on the time spent inside the
RFRXpacket IQRF OS function (used to receive network packets) located in the main DPA loop. In the
case when there is a full IQMESH network consisting of 239 devices and the timeslot equals 100 ms,
the Idle event might not be called even for 239 × 100 ms = 23.9 s. Even a long time the Idle event is not
called can happen during FRC and especially discovery.

Example

 case DpaEvent_Idle:
 // Go sleep?
 if (sleepTime != 0)
 {
 // Prepare OS Sleep DPA Request
 // Time in 2.097 s units
 _DpaMessage.PerOSSleep_Request.Time = sleepTime;
 sleepTime = 0;
 _PNUM = PNUM_OS;
 _PCMD = CMD_OS_SLEEP;
 // LEDG flash after wake up
 _DpaMessage.PerOSSleep_Request.Control = 0b0100;
 _DpaDataLength = sizeof (TPerOSSleep_Request);
 // Perform local DPA Request
 // BeforeSleep and AfterSleep events will not be called in this case!
 DpaApiLocalRequest();
 }

 // Return user DPA value
 UserDpaValue = myUserDpaValue;

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setindf0.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-TimerCalibrated.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=rfrxpacket.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 81

 return Carry;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-Coordinator-ReflexGame.c for
more details.

 9.3.3 Init

This event is called just before the main loop starts after the Reset event i.e. where the [N] might be
(un)bonded. Also, Enumerate Peripherals is called before this event is raised to find out the hardware
profile ID (HWPID). This event is typically used to initialize peripherals and global variables. If the
initialization is needed as soon as possible and even if the device is not bonded yet then it can be
implemented inside the 1st call of a Reset event. Make sure the Init event is processed quickly especially
when the [N] was bonded in the Reset event (NodeWasBonded indicates the [N] was just bonded) to
process Ping FRC issued by [C] to verify the [N] is bonded.

Example

 case DpaEvent_Init:
 myVariable = 123;
 T6CON = 0b0.0110.1.00;

 TMR6IE = 1;

 return Carry;

☼ See example code CustomDpaHandler-Timer.c for more details.

 9.3.4 Notification

This event is called when a DPA Request was successfully processed and the DPA Response was sent.
DPA Response (but not the original DPA Request) is available at this event. The user can sense what
peripheral was accessed and react accordingly. _NADR contains the address of the sender of the
original DPA Requests i.e. address to send DPA Request to.

Example

 case DpaEvent_Notification:
 // Anything was written to the RAM?
 if (_PNUM == PNUM_RAM && _PCMD == CMD_RAM_WRITE)
 {
 if (PeripheralRam[0] == 0xAB)
 setLEDR();
 else
 setLEDG();

 ramWritten = TRUE;
 }

 if (_PNUM == PNUM_EEPROM && _PCMD == CMD_EEPROM_WRITE)
 {
 uns16 someData @ bufferINFO;

 eeReadData(PERIPHERAL_EEPROM_START, sizeof(someData));
 if (someData == 0)
 {
 // …
 }
 }

 return Carry;

☼ See example code CustomDpaHandler-LED-MemoryMapping.c, CustomDpaHandler-
PeripheralMemoryMapping.c for more details.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-ReflexGame.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-MemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 82

 9.3.5 AfterRouting

[sync] This event is called after the DPA Request was sent and (optional) Notification event and
(optional) Interface Notification is sent. In any case, the packet routing of the original DPA Request is
finished.

Please note that the RF channel is not defined but if it is changed by the user code (e.g. before calling
DpaApiRfTxDpaPacket) its value must be restored. Also, note that the original DPA Request nor
Response foursome, as well as DPA data, are not available anymore.

Example

 case DpaEvent_AfterRouting:
 if (ramWritten)
 {
 ramWritten = FALSE;
 stopLEDR();
 stopLEDG();
 }
 return Carry;

☼ See example code CustomDpaHandler-PeripheralMemoryMapping.c for more details.

 9.3.6 BeforeSleep

This event is called before the device goes to Sleep mode and at Standby. The code must shut down
all HW and MCU peripherals and circuitry not handled by DPA by default. Especially custom handling
of SPI and I2C MCU peripherals in a non-DPA way must be handled. Also, to minimize the power
consumption, no MCU pin must be left as digital input without a defined input level value. So, unused
pins in the given hardware should be set as outputs.

☼ See example code CustomDpaHandler-Timer.c.

This event is not implemented at [C].

Example

 case DpaEvent_BeforeSleep:
 StopMyPeripherals();
 return Carry;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-UserPeripheral-i2c.c for more
details.

 9.3.7 AfterSleep

This event is called after the device wakes up from Sleep mode and at Standby. The event handler is
the opposite of the BeforeSleep event handler.

This event is not implemented at [C].

Example

 case DpaEvent_AfterSleep:
 StartMyPeripherals();
 return Carry;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-UserPeripheral-i2c.c for more
details.

 9.3.8 Reset

The event is called just after the module was reset. It can be used to implement the custom
bonding/unbonding of the [N] devices. In this case, the event handler must return TRUE and so the
default internal DPA bonding/unbonding code is skipped. If [N] is bonded, the event is raised only once

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-i2c.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-i2c.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 83

to allow unbonding. If the [N] is not bonded the event is called until the [N] is bonded. The code does
not have to handle the setting of the NodeWasBonded variable. For details see Node events flow. See
also Init event concerning the initialization options. The interrupt is enabled so the Interrupt event can
be already called. [N] devices are set to the Node mode by calling the setNodeMode IQRF OS function
before this event is raised. After the bonding is done the content of the bufferRF must stay intact.

The Reset event is also once raised at the [C] device for the sake of the same behavior of all device
types. In this case, it is not used to do bonding or unbonding of course. The [C] devices are at
non-network mode because of the previous call of setNonetMode IQRF OS function.

Example

 // Illustrative code
 case DpaEvent_Reset:
 if (!doCustomBonding)
 return FALSE;

 if (amIBonded())
 {
 if (unBondCondition)
 {
 removeBond();
 setLEDR();
 waitDelay(100);
 stopLEDR();
 }
 }
 else
 {

 while (!amIBonded())
 {
 if (bondRequestCondition)
 {

 bondRequestAdvanced();
 setWDToff();
 }
 }

 }

 return TRUE;

☼ See example code CustomDpaHandler-Bonding.c for more details.

 9.3.9 Disable Interrupts

The event is called when the device needs all hardware interrupts to be disabled. Such a moment occurs
at Reset, Restart, LoadCode, Run RFPGM, Remove bond, Factory Settings, and Validate bonds (when
[N] is restarted) commands as all of them cause the device to reset or restart. It is also raised at Reset,
Unbond + Restart, and Unbond + Factory Settings + Restart.

Example

 case DpaEvent_DisableInterrupts:
 // ADC Interrupt Enable - off
 ADIE = 0;
 return Carry;

☼ See example code CustomDpaHandler-Timer.c for more details.

 9.3.10 FrcValue

[sync] This event is called whenever the [N] is asked to provide data to be collected by FRC (see Send)
and specified FRC Command is not handled by DPA itself (see Predefined FRC Commands). FRC
Command value is accessible at the _PCMD variable. FRC data to collect must be stored at the
responseFRCvalue IQRF OS variable. If 2 bytes are collected then the data must be stored at

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setnodemode.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setnonetmode.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bonding.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 84

responseFRCvalue2B variable instead and at responseFRCvalue4B variable when 4 bytes are collected
respectively. If bits are collected then only the lowest 2 bits of responseFRCvalue are used. Before
calling the variables responseFRC* are prefilled with 1 (except Acknowledged broadcast - bytes).

The code must take less than 40 ms at all Nodes to keep them synchronized (the event is fired at the
same time at all Nodes) and to avoid RF collisions. If 40 ms is not enough to prepare data then use Set
FRC Params to set a longer time to prepare data for FRC to return.

Important: If the event handler exceeds the selected time then the device does not respond via FRC at
all thus “returning” 0 value.

Important: The event is raised even at the Nodes that are not addressed by the current FRC command.
IQRF OS function amIRecipientOfFRC can be used to find out if the result value is to be returned.

User data passed by Send are accessible at the DataOutBeforeResponseFRC IQRF OS variable. This
event is implemented at [N] devices only.

Example

case DpaEvent_FrcValue:
{
 switch (_PCMD)
 {
 // This example is sensitive to the bit FRCommand 0x40
 case FRC_USER_BIT_FROM:
 // Return info about power supply voltage
 if (getSupplyVoltage() < 40) // < 3.00 V?
 // Both bits bit0 and bit1 are set now
 responseFRCvalue.1 = 1;
 break;

 // This example is sensitive to the byte FRCommand 0xC0
 case FRC_USER_BYTE_FROM:
 // Just return your logical address as an example
 responseFRCvalue = ntwADDR;
 break;

 // This example is sensitive to the byte FRCommand 0xF0
 case FRC_USER_2BYTE_FROM:
 // Return 2 byte value
 responseFRCvalue2B = Measure2Bytes();
 break;

 // This example is sensitive to the byte FRCommand 0xF8
 case FRC_USER_4BYTE_FROM:
 // Return 4 byte value
 // Use .low16, .high16, … to access this variable at the free CC5X edition
 responseFRCvalue4B = Measure4Bytes();
 break;
 }

 return Carry;
}

☼ See example code CustomDpaHandler-FRC.c for more details.

 9.3.11 FrcResponseTime

This event is raised by predefined FRC response time command. 1st FRC user data byte (i.e. variable
DataOutBeforeResponseFRC[0]) specifies the value of the user FRC command the FRC response time

is requested. The byte return value corresponds to one of the corresponding
_FRC_RESPONSE_TIME_??_MS constant (see IQRF-macros.h). It is highly recommended to implement this

event for every user-defined FRC command. This allows the control system connected to the [C] to find

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/IQRF-macros.h.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 85

out the longest FRC response time in the network consisting of “unknown” heterogeneous [N] devices.
DPA internally sets the lowest bit of the return value to prevent returning zero (equals
_FRC_RESPONSE_TIME_40_MS) value. If the handler does not handle this event a value 0xFF is returned.

The event is raised even at the Nodes that are not addressed by the current FRC response time
command. IQRF OS function amIRecipientOfFRC can be used to find out if the result value is returned.

Example

case DpaEvent_FrcResponseTime:
 switch (DataOutBeforeResponseFRC[0])
 {
 case FRC_USER_BIT_FROM + 0:
 case FRC_USER_BIT_FROM + 1:
 responseFRCvalue = _FRC_RESPONSE_TIME_40_MS;
 break;

 case FRC_USER_BYTE_FROM + 0:
 responseFRCvalue = _FRC_RESPONSE_TIME_640_MS;
 break;
 }
 return Carry;

☼ See example code CustomDpaHandler-FRC.c for more details.

 9.3.12 ReceiveDpaResponse

This event is implemented at [C] devices. It is called when a DPA Request packet was received from
the network. If the event handler returns TRUE, then further standard DPA Request processing (passing
DPA Request to the interface master internally by DpaApiSendToIFaceMaster) is skipped. The event is
raised even when HWPID does not match. At this time, system variables RTTSLOT and RTHOPS have
valid numbers corresponding to the received DPA Response.

Example

case DpaEvent_ReceiveDpaResponse:
 {
 // This example just for demonstration purposes consumes any
 // DPA Request CMD_LED_PULSE at peripheral PNUM_LEDG and pulses LEDR locally
 if (_PNUM == PNUM_LEDG && _PCMD == (CMD_LED_PULSE | RESPONSE_FLAG))
 {
 pulseLEDR();
 return TRUE;
 }

 return FALSE;
 }

☼ See example code CustomDpaHandler-Coordinator-PollNodes.c for more details.

 9.3.13 IFaceReceive

This event is implemented at the [C] device. It is called when a DPA Request packet was received from
the interface master. If the event handler returns TRUE, then further standard DPA Request processing
(sending DPA Confirmation back to the interface master, passing DPA Request to the network internally
by DpaApiRfTxDpaPacketCoordinator) is skipped. In this case, the interface master receives an error
DPA Request with ERROR_INTERFACE_CUSTOM_HANDLER Response Code. The event is raised
even when HWPID does not match.

Example

case DpaEvent_IFaceReceive:
 {
 // This example just for demonstration purposes consumes any DPA Request
 // CMD_LED_PULSE at peripheral PNUM_LEDR and pulses LEDG locally

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PollNodes.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 86

 if (_PNUM == PNUM_LEDR && _PCMD == CMD_LED_PULSE)
 {
 pulseLEDG();
 return TRUE;
 }

 return FALSE;
 }

 9.3.14 ReceiveDpaRequest

The event is called when a DPA Request (except Get information for more peripherals and Remove
bond) is received from the network or from the interface master (if applicable). If the event handler
returns TRUE, then the request is not passed to the default handling by the DPA Request event. In this
case, the programmer is fully responsible for preparing a valid DPA Response that will be returned to
the device that sent the original DPA Request. Also, the BeforeSendingDpaResponse event is skipped.
The event is raised even when HWPID does not match.

Example #1

case DpaEvent_ReceiveDpaRequest:
// Returns error when there is an attempt to write to the address 0 of RAM peripheral
if (_PNUM==PNUM_RAM && _PCMD==CMD_RAM_WRITE && _DpaMessage.MemoryRequest.Address==0)
{
 _PCMD |= RESPONSE_FLAG;
 DpaApiSetPeripheralError(ERROR_FAIL);
 return TRUE;
}

return FALSE;

Example #2

case DpaEvent_ReceiveDpaRequest:
// Do not allow DPA Request from Interface
if (TX == LOCAL_ADDRESS)
{
 _PCMD |= RESPONSE_FLAG;
 DpaApiSetPeripheralError(ERROR_NADR);
 return TRUE;
}

return FALSE;

Example #3

case DpaEvent_ReceiveDpaRequest:
// Beaming packet received and beaming command we understand?
if (!_ROUTEF &&
 _PNUM == PNUM_STD_SENSORS &&
 _PCMD == (PCMD_STD_SENSORS_READ_TYPES_AND_FRC_VALUES | RESPONSE_FLAG))
 {
 …
 }

return FALSE;

☼ See example codes CustomDpaHandler-PeripheralMemoryMapping.c, CustomDpaHandler-
HookDpa.c and CustomDpaHandler-BeamingAggregation.c for more details.

 9.3.15 BeforeSendingDpaResponse

The event is called when a DPA Response (except a response to Get information for more peripherals)
is ready to be returned to the device that sent a DPA Request via a network or from the interface master

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-HookDpa.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-HookDpa.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BeamingAggregation.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 87

(if applicable). The event handler can inspect or modify the DPA Response even in the way that the
error code is returned.

Example

case DpaEvent_BeforeSendingDpaResponse:
 // Always adds one more read byte from EEEPROM peripheral and sets it to 0x55
 if (_PNUM == PNUM_EEEPROM && _PCMD == CMD_RAM_READ)
 {
 _DpaDataLength++;
 FSR0 = _DpaMessage.Response.PData + _DpaDataLength - 1;
 setINDF0(0x55);
 }

 return Carry;

Example

case DpaEvent_BeforeSendingDpaResponse:
// This example hides even enabled and implemented PNUM_IO peripheral
if (IsDpaEnumPeripheralsRequest())
 _DpaMessage.EnumPeripheralsAnswer.EmbeddedPers[PNUM_IO/8] &= ~(1 << (PNUM_IO % 8));
else
 if (_PNUM == PNUM_IO && _PCMD == CMD_GET_PER_INFO)
 _DpaMessage.PeripheralInfoAnswer.PerT = PERIPHERAL_TYPE_DUMMY;
return Carry;

 9.3.16 PeerToPeer

When peer-to-peer (non-networking) packets are enabled at TR Configuration then the device raises
this event when such a packet is received. Peer-to-peer packets are received by all devices receiving
at the same RF channel. The peer-to-peer packets can be used to implement e.g. simple
battery-operated remote control device that is not part of the DPA network. It is highly recommended to
use additional security techniques (e.g. encryption, rolling code, checksum, CRC) against packet
sniffing, spoofing, and eavesdropping. As the peer-to-peer packets are not networked ones, optional
addressing (_DpaParams DPA variable can be misused for this purpose) must be implemented in a
custom way. It is also recommended to use the lowest possible RF output power and listen-before-talk
technique to minimize the risk of RF collision that might cause the main network RF traffic to fail. The
following minimalistic examples show only the basic usage.

Example - Transmitter

// Set RF mode to STD-TX
setRFmode(_TX_STD);
// Prepare default PIN
PIN = 0;
// Prepare "DPA" peer-to-peer packet

// DPA packet fields will be used
_DPAF = 1;
// Fill in PNUM and PCMD
_PNUM = PNUM_LEDG;
_PCMD = CMD_LED_PULSE;
// No DPA Data
_DpaDataLength = 0;
// Transmit the prepared packet
RFTXpacket();

Example - Handler

case DpaEvent_PeerToPeer:
 // Peer-to-peer "DPA" packet?
 if (_DPAF)
 // Just execute the DPA Request locally
 DpaApiLocalRequest();

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 88

 return Carry;

☼ See example code Peer-to-Peer-Transmitter.c, CustomDpaHandler-Peer-to-Peer.c,
CustomDpaHandler-PIRlighting.c for more details.

 9.3.17 UserDpaValue

This event is raised whenever DPA is internally required to return user-defined DPA value in the DPA
Response. This event is raised the very last time when it is necessary to fill in the UserDpaValue variable
but the user can also fill in this variable at any other event before and ignore this event.

Example

case DpaEvent_UserDpaValue:
 UserDpaValue = myDpaValue;
 return Carry;

 9.3.18 BondingButton

This event is called only at TR-7xD [N] during the standard DPA (un)bonding process at [N] and it allows
to redefine (un)bonding button. If the event handler returns FALSE the default button is used. If the
event handler returns TRUE then the bit at userReg1.0 specifies whether the used bonding button is
pressed or not. When a custom button is used then the [N] does not go into a power-saving sleep mode
during bonding. IQRF OS function amIBonded can distinguish between bonding and unbonding.

Since [N] spends most of its time in the LP reception during bonding, interrupts cannot be raised even
though they are enabled. This can be solved by adding a 10 ms delay by calling waitMS to this event.
Such a delay does not block the SmartConnect bonding and allows enough interrupts (e.g., from the
custom UART interrupt handler) to be received during this delay.

This event is also used to modify a default bonding button timeout using the BondingSleepCountdown
variable.

Example

case DpaEvent_BondingButton:
 userReg1.0 = 0;
 if (!PORTA.0)
 userReg1.0 = 1;
 return TRUE;

☼ See example CustomDpaHandler-BondingButton.c for more details.

 9.3.19 Indicate

[sync] This event is raised at [N] before the embedded [sync] Indicate command is executed i.e. after
the IQMESH routing is finished. When the event handler returns FALSE, the default indication is
processed.
The event handler may return TRUE to implement a custom indication according to the Control byte of
the Indicate command passed at the userReg1 variable (only valid bits of Control byte are passed) and
to skip the default device indication. Please see this example for the recommended implementation. If
the device indication is to be off when the device sleeps, the BeforeSleep event must be handled too.

☼ See example CustomDpaHandler-CustomIndicate.c for more details.

 9.3.20 VerifyLocalFrc

This event is used to verify the Local FRC command received at the [N] (sometimes called actuator).
The event is raised only when the Local FRC is enabled at the configuration. The execution of the FRC
command continues only if the function returns TRUE. The event typically checks the following variables
to verify the received FRC command:

• TX = address of the [N] (sometimes called a controller) that sent the local FRC command.

• _PCMD = FRC command value.

https://doc.iqrf.org/DpaTechGuide/430/examples/Peer-to-Peer-Transmitter.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Peer-to-Peer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PIRlighting.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=amibonded.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BondingButton.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-CustomIndicate.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-CustomIndicate.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 89

• DataOutBeforeResponseFRC = FRC user data that were stored in the DataInSendFRC at
controller’s side.

☼ See example CustomDpaHandler-LocalFRC.c for more details.

 9.3.21 MenuActivated

This event is raised only at TR-7xG [N] when Online or ReadyToBond DPA Menus are about to be
activated. The userReg1 variable at the entry is the menu to be activated (DMENU_Online or

DMENU_ReadyToBond). On exit userReg1 variable must contain flags for enabling or disabling

implementation of the optional menu items (or 0, if menu is not customized). See DpaApiMenu
parameter flags for details. The event must return TRUE to be processed, otherwise the menu is not
customized.

Example

case DpaEvent_MenuActivated:
 switch (userReg1)
 {
 case DMENU_Online:
 userReg1 = DMENU_Item_Implemented_GoBeaming | DMENU_Item_Implemented_User1;
 return TRUE;

 case DMENU_ReadyToBond:
 userReg1 = DMENU_Item_Unimplemented_UnbondFactorySettingsAndRestart;
 return TRUE;
 }

return FALSE;

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.3.22 MenuItemSelected

This event is raised only at TR-7xG [N] when a menu item from Online or ReadyToBond DPA Menus
was selected. The userReg1 variable at the entry contains menu and menu item, that was selected. If
the user item is optional and implemented in the Custom DPA Handler the event must return TRUE to
indicate OK result of the menu item, otherwise it must return FALSE to indicate error. Predefined macro
MakeDMenuAndItem constructs menu&menuItem value. Predefined macros GetDMenu and

GetDMenuItem get menu or menu item part from the menu&menuItem value respectively. Menu item

action might be executed at this event to find out the its result or it can be executed at the
MenuItemFinalize event later, if the result is known.

Example

static bit startBeamingAtIdle;

…

case DpaEvent_MenuItemSelected:
 switch (userReg1)
 {
 case MakeDMenuAndItem(DMENU_Online, DMENU_Item_GoBeaming):
 if (amIBonded())
 {
 startBeamingAtIdle = TRUE;
 return TRUE;
 }
 break;

 case MakeDMenuAndItem(DMENU_Online, DMENU_Item_User1):
 return TRUE;
 }

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LocalFRC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 90

return FALSE;

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.3.23 MenuItemFinalize

This event is raised only at TR-7xG [N] when a previously selected menu item from Online or
ReadyToBond DPA Menu is to be finalized. The userReg1 variable at the entry contains menu and
menu item, that was previously selected. If the user item is implemented in the Custom DPA Handler
the event must execute the menu action if it was not already executed at MenuItemSelected event.

Example

case DpaEvent_MenuItemFinalize:
 switch (userReg1)
 {
 case MakeDMenuAndItem(DMENU_Online, DMENU_Item_User1):
 ExecuteMyUser1MenuItem();
 break;
 }

return Carry;

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.3.24 DPA Request

DPA Requests to peripherals are handled in the same way as the built-in DPA interpreter does it. If DPA
Request is passed an event DpaEvent_DpaRequest is signaled.

☼ See example codes CustomDpaHandler-UserPeripheral???.c for more details.

 9.3.24.1 Enumerate Peripherals

This DPA Request is executed as a part of the peripheral enumeration.

The purposes of the request are:

1. Specify how many user peripherals are implemented.
2. Set bits corresponding to the user peripherals at the UserPer array. Predefined macro

FlagUserPer can be used.

3. If any embedded peripheral is handled by a custom DPA handler instead of the default handler
(overriding embedded peripherals).

4. Specify HW profile ID and its version if one is implemented.

Example

case DpaEvent_DpaRequest:
if (IsDpaEnumPeripheralsRequest())
{
 // One user peripheral defined
 _DpaMessage.EnumPeripheralsAnswer.UserPerNr = 1;
 FlagUserPer(_DpaMessage.EnumPeripheralsAnswer.UserPer, PNUM_USER);
 // We override embedded EEEPROM peripheral
 _DpaMessage.EnumPeripheralsAnswer.DefaultPer[PNUM_EEEPROM/8] |= 1 << (PNUM_EEEPROM % 8);
 // HW profile ID and version
 _DpaMessage.EnumPeripheralsAnswer.HWPID = 0x123F;
 _DpaMessage.EnumPeripheralsAnswer.HWPIDver = 0xABCD;

 return TRUE;
}

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 91

 9.3.24.2 Get Peripheral Info

If the user code handles user peripherals or overrides embedded peripherals then this request is used
to return information about the peripheral in the peripheral information format. If the handler does not
handle the DPA “Get peripheral info request” then it must return FALSE to indicated error, otherwise, it
must return TRUE.

Example

case DpaEvent_DpaRequest:
…
else if (IsDpaPeripheralInfoRequest())
{
 // 1st user peripheral
 if (_PNUM == PNUM_USER)
 {
 _DpaMessage.PeripheralInfoAnswer.PerT = PERIPHERAL_TYPE_LED;
 _DpaMessage.PeripheralInfoAnswer.PerTE = PERIPHERAL_TYPE_EXTENDED_READ_WRITE;
 _DpaMessage.PeripheralInfoAnswer.Par1 = LED_COLOR_UNKNOWN;
 }
 return TRUE;
}

 9.3.24.3 Handle Peripheral Request

This request is sent whenever there is DPA Request for a peripheral that was not handled by the default
DPA code. Typically the code handles requests for user peripherals or overridden embedded
peripherals. If the handler does not handle the DPA Request then it must return FALSE to indicated
error (then DPA Request contains response code ERROR_PNUM), otherwise, it must return TRUE.

Please note how to return an error state in the following code. Set PNUM to PNUM_ERROR_FLAG, set
1st data byte of the DPA Request to the error code, set 2nd byte to the original PNUM, and finally specify
that the length of the data is 2. The best way is to use a predefined union member at
_DpaMessage.ErrorAnswer.

If code saving is not an issue or there are just a few error types returned then it is easier to call
DpaApiReturnPeripheralError API to return the error state. Otherwise shared (using goto) central error
point is advised. Both methods can be seen in the code example below.

Example

case DpaEvent_DpaRequest:
…
else if (IsDpaPeripheralInfoRequest())
 // …
else
{
 // 1st user peripheral
 if (_PNUM == PNUM_USER)
 {
 // Test for some data sent
 if (DpaDataLength == 0)
 {
 // Return error ERROR_DATA_LEN
 // DpaApiReturnPeripheralError(ERROR_DATA_LEN); is the easiest way
 _DpaMessage.ErrorAnswer.ErrN = ERROR_DATA_LEN;
UserErrorAnswer:
 _DpaMessage.ErrorAnswer.PNUMoriginal = _PNUM;
 _PNUM = PNUM_ERROR_FLAG;
 _DpaDataLength = sizeof(_DpaMessage.ErrorAnswer);
 return TRUE;
 }

 if (_PCMD == 0)
 {

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 92

 UseDataCmd0(_DpaMessage.Request.PData[0]);
 _DpaDataLength = 0;
 return TRUE;
 }
 else if (_PCMD == 1)
 {
 UseDataCmd1(_DpaMessage.Request.PData[0]);
 _DpaMessage.Response.PData[0] = someDataToReturn;
 _DpaDataLength = 1;
 return TRUE;
 }
 else
 {
 // Return error ERROR_PCMD
 // or DpaApiReturnPeripheralError(ERROR_PCMD); is the easiest way
 _DpaMessage.ErrorAnswer.ErrN = ERROR_PCMD;
 goto UserErrorAnswer;
 }
 }

 return TRUE;
}

return FALSE;

 9.3.24.4 Alternative Event Processing

There is an optimized macro IfDpaEnumPeripherals_Else_PeripheralInfo_Else_PeripheralRequest() that
saves a code compared to the previous way when detecting various cases of the event. The macro is
the DPA version independent.

case DpaEvent_DpaRequest:
 // Called to interpret DPA Request for peripherals
 IfDpaEnumPeripherals_Else_PeripheralInfo_Else_PeripheralRequest()
 {
 // Peripheral enumeration
 ...
 return TRUE;
 }
 else
 {
 // Get information about peripheral
 ...
 return TRUE;
 }

 // Handle peripheral command
 ...
 return TRUE;

 9.4 DPA API

The following functions can be called from the Custom DPA Handler routine. Please note that after
calling an API function or after modification of the userReg0 variable the value of macro GetDpaEvent()
is undefined.

When any of the API functions is called more than once it is recommended to call a wrapper function
instead, that has the same name but is prefixed by an underscore character. This reduces the size of
the compiled code.

 9.4.1 DpaApiRfTxDpaPacket

void DpaApiRfTxDpaPacket(uns8 dpaValue, uns8 netDepthAndFlags)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 93

Available at [N] devices. This function wraps all necessary code to send a DPA message (typically DPA
Response) from [N] to [C]. There are only a few global parameters or variables that have to be filled in
before the call (see example below). Many other parameters are handled inside the function
automatically. The following example shows a typical usage. The parameter dpaValue specifies a
DpaValue that is returned with the DPA Request. Because the message is asynchronous its response
code the highest bit is set (see STATUS_ASYNC_RESPONSE).

If the [C] is addressed by COORDINATOR_ADDRESS = 0x00, then the DPA packet is sent by the addressed

[C] to the interface master after it is received.

If the [C] is addressed by LOCAL_ADDRESS = 0xFC, then the DPA packet (request) is executed locally

at [C].

The usage of the parameter netDepthAndFlags is the following. Lower 7 bits specify net depth. Use
value 1 if the message should be terminated at the subordinate [C], use value 2 if the message should
be terminated at the DPA interface of the same [C] or the [C] above the same [C], etc. If the most
significant bit of netDepthAndFlags is set then the message is marked as synchronous otherwise as
asynchronous.

Calling DpaApiRfTxDpaPacket is allowed only at Idle and AfterRouting events. The function does not
take into account any IQMESH timing requirements (e.g. waiting for the end of the routing process) or
possible RF signal collision.

It is important to make sure that the PID of the message differs from the previously sent message from
the same device with the same PCMD, otherwise, the message is regarded as a duplicate. Please note,
that the previous same message might have been sent as an ordinary DPA Response. So it is advised
to store the PID of such a response and use a different one then. Please see the very first statement in
the example below.

Example

// Generate new packet ID to avoid false detection of duplicate packet
PID = ++pid;
// Number of hops = my VRN
RTHOPS = ntwVRN;
// No DPA Params used
_DpaParams = 0;
// Execute DPA Request at Coordinator
_NADR = LOCAL_ADDRESS;
_NADRhigh = 0;
// We will use an LED peripheral
_PNUM = PNUM_LEDR;
// Pulse the LED
_PCMD = CMD_LED_PULSE;
// HW profile ID
_HWPID = 0x1234;
// Length of the data inside DPA Request message
_DpaDataLength = 0;
// Transmit DPA message with DPA Value equal the lastRSSI (can be any other value)
DpaApiRfTxDpaPacket(lastRSSI, 1);

☼ See example codes CustomDpaHandler-AsyncRequest.c for more details.

 9.4.2 DpaApiReadConfigByte

uns8 DpaApiReadConfigByte(uns8 index)

This function returns the TR Configuration value from a given index (address). Calling this function does
not modify FSRx registers.

Example

setRFchannel(DpaApiReadConfigByte(CFGIND_OS_CHANNEL_2ND));

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-AsyncRequest.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 94

☼ See example codes CustomDpaHandler-AsyncRequest.c for more details.

 9.4.3 DpaApiSendToIFaceMaster

void DpaApiSendToIFaceMaster(uns8 dpaValue, uns8 flags)

Available at [C] and STD [N] with the interface. The function passes the prepared DPA packet (DPA
Response) to the interface master. The function sends the DPA packet marked as asynchronous unless
bit flags.0 is set.

The [C] device only:
If the interface master was not previously detected, then the call is ignored in the case of the SPI
interface. If there is some older data at the interface bus not being collected by the interface master yet
then the function waits until the data is read.

Calling DpaApiSendToIFaceMaster is allowed only at Idle, IFaceReceive, and ReceiveDpaResponse
events.

☼ See example codes CustomDpaHandler-Coordinator-FRCandSleep.c, CustomDpaHandler-
Coordinator-PollNodes.c for more details.

 9.4.4 DpaApiRfTxDpaPacketCoordinator

uns8 DpaApiRfTxDpaPacketCoordinator()

Available at [C] devices only. This function is specially prepared for sending DPA Requests from [C] to
the [N] devices in its network. It prepares even more of the requested parameters automatically
compared to the DpaApiRfTxDpaPacket function. Last but not least it also takes care of waiting to send
another DPA Request until the routing of the previously sent (and received) packet is finished thus
minimizing the probability of the network collision. The call initializes NetDepth by value 1.
The function returns the number of hops used to deliver the DPA Request from the addressed device
back to the [C]. The number of hops used to deliver the DPA Request to the addressee and slot length
is available at IQRF OS variables RTHOPS and RTTSLOT respectively. Thus, the same information
(Hops, Timeslot length, Hops Response) as within DPA Confirmation is available to the developer. See
also Set Hops.
Calling DpaApiRfTxDpaPacketCoordinator is allowed only at Idle, AfterRouting, and IFaceReceive
events.

Example

case DpaEvent_Idle:
 {
 // The following block of code demonstrates autonomous once per 60 s sending
 // of packets if the [C] is not connected to the interface master
 if (IFaceMasterNotConnected && DpaTicks.15 != 0)
 {
 // Setup new timer
 GIE = 0;
 DpaTicks = 60 * 100L;
 GIE = 1;

 // DPA Request is broadcasted
 _NADR = BROADCAST_ADDRESS;
 _NADRhigh = 0;
 // Use red LED
 _PNUM = PNUM_LEDR;
 // Make a LED pulse
 _PCMD = CMD_LED_PULSE;
 // HW profile ID
 _HWPID = HWPID_DoNotCheck;
 // This DPA Request has no data
 _DpaDataLength = 0;
 // Send the DPA Request

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-AsyncRequest.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-FRCandSleep.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PollNodes.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PollNodes.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 95

 DpaApiRfTxDpaPacketCoordinator();
 }

 return Carry;
 }

☼ See example codes CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 9.4.5 DpaApiLocalRequest

void DpaApiLocalRequest()

Performs a local DPA Request at the embedded peripheral, which is even not enabled in the TR
Configuration. Of course, the peripheral must be implemented. After the function returns, a
corresponding DPA Request is available except when the original DPA Request was a Batch. Calling
DpaApiLocalRequest is allowed at Init, Idle, AfterRouting, BeforeSleep, AfterSleep, PeerToPeer, and
DisabIeInterrupts events. It can be also called carefully inside the Reset event as during the event the
device might not be bonded yet, the interface is not started, etc. When a processed DPA message is
not destroyed or used later then the function can be carefully used at ReceiveDpaResponse,
IFaceReceive, ReceiveDpaRequest, and BeforeSendingDpaResponse events too. To avoid reentrancy
no Custom DPA Handler events (except Interrupt event) are called during local DPA Request
processing. This is the reason why performing local DPA Request on custom peripherals do not work.
Also, when e.g. Sleep request is executed locally, then events BeforeSleep and AfterSleep are not
raised (same applies to e.g. Run RFPGM and Disable Interrupts event). As the DPA Request is
executed locally there is no need to fill in _NADR, _NADRhigh, and _HWPID variables, see example below.

Please note that this call invalidates the value obtained by GetDpaEvent() macro later in the current
event handling.

Example

case DpaEvent_Idle:
 if (IsSleepTime)
 {
 IsSleepTime = FALSE;
 // Prepare OS Sleep DPA Request
 _PNUM = PNUM_OS;
 _PCMD = CMD_OS_SLEEP;
 _DpaMessage.PerOSSleep_Request.Time = 123;
 _DpaMessage.PerOSSleep_Request.Control = 0b0010;
 _DpaDataLength = sizeof(TPerOSSleep_Request);
 // Perform local DPA Request
 DpaApiLocalRequest();
 // If no error, pulse the LEDR after wake up
 if (_PNUM != PNUM_ERROR_FLAG)
 pulseLEDR();
 }
 return Carry;

☼ See example code CustomDpaHandler-Coordinator-FRCandSleep.c for more details.

 9.4.6 DpaApiReturnPeripheralError

DpaApiReturnPeripheralError (uns8 error)

This is a macro calling internal API DpaApiSetPeripheralError(error) to prepare an error DPA Request
from the peripheral DPA Request handling code. Then the macro executes return TRUE or FALSE.

This simple statement DpaApiReturnPeripheralError(ERROR_DATA_LEN) using the macro is fully
equivalent to the following lines of code:

_DpaMessage.ErrorAnswer.ErrN = ERROR_DATA_LEN;
_DpaMessage.ErrorAnswer.PNUMoriginal = _PNUM;
_PNUM = PNUM_ERROR_FLAG;
_DpaDataLength = sizeof(_DpaMessage.ErrorAnswer);
return Carry;

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PulseLEDs.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-FRCandSleep.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 96

The user peripheral can return user error codes. Such code values must lie between ERROR_USER_FROM
and ERROR_USER_TO. See Response Codes.

☼ See example codes CustomDpaHandler-UserPeripheral.c for more details.

 9.4.7 DpaApiSetRfDefaults

void DpaApiSetRfDefaults()

Sets the following default RF settings according to the IQRF OS and TR Configurations and a current
DPA RF mode:

• RF filter value,

• RF mode,

• RF power value and

• RF channel value.

This function is typically called when some RF setting was altered or when IQRF OS function
wasRFICrestarted returns TRUE.

 9.4.8 DpaApiLocalFrc

uns8 DpaApiLocalFrc (uns8 frcCommand, uns8 replyTxPower)

Available at [N] devices only. This function executes a selective Local FRC. Parameter frcCommand

specifies the FRC command value. It can be an embedded FRC command or a custom one. The
parameter replyTxPower specifies the RFoutput power used by the addressed [Ns] FRC responses to
control RF interference. Addressed [Ns] are selected by individual bits in the 30-byte long bitmap at the
bufferINFO array (see SelectedNodes parameter for more information). Fill in DataInSendFRC with the
FRC user data according to the actual FRC command used. The function’s return value (typically
number of responding [Ns]) is the FRC Status (see Send response) and param2 contains the number
of addressed [Ns]. All FRC values collected from the addressed [Ns] are then available bufferINFO
array.

Local FRC is an extensive stack operation. You can use a macro DpaApiLocalFrc_StackSaver instead
to prevent a stack overflow. Please note that the return value is available in register W and extra 2
instructions are emitted.

DpaApiLocalFrc_StackSaver(FRC_CMD, TX_POWER_MAX);
if (W != 0)
{
 …

☼ See example CustomDpaHandler-LocalFRC.c for more details.

 9.4.9 DpaApiCrc8

uns8 DpaApiCrc8 (uns8 crc8, uns8 data)

Available at [N] devices only. The function computes and returns a new crc8 value by applying data
value. This CRC function uses the same polynomial as UART Interface. Calling this function does not
modify FSR0 and FSR1L registers, but modifies the FSR1H register.

 9.4.1 DpaApiAggregateFrc

void DpaApiAggregateFrc ()

Available at [N] devices only. This function is used to initiate FRC value aggregation at the end of the
FrcValue event handler. The calling device must be discovered and a feature FRC Aggregation must
be enabled from the transceiver manufacturer during transceiver’s production.

The FRC aggregation is used to force returning FRC values from devices other than the current one.
Other devices do not have to be even alive nor discovered at the time of the FRC request. Typically,
this is used to provide data received asynchronously (in non-network mode) from battery sensors (i.e.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=wasrficrestarted.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LocalFRC.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 97

other devices) that are in sleep mode most of the time. The data received from the sensors are stored
and then later aggregated in the case of an FRC request and thus they appear in the Send FRC
response in the same way as if the sensor devices were online.

The FRC aggregation consists of the following steps:

1. Catch FrcValue event in the Custom DPA Handler.
2. Check for the supported FRC command(s).
3. Clear aggregation bufferINFO.
4. Loop all addressed Nodes.
5. If the addressed node FRC value should be aggregated then store the value at aggregation

buffer at the same place the data would appear in the Send FRC response.
6. Call DpaApiAggregateFrc().

7. Exit FrcValue event handler.

☼ Please see CustomDpaHandler-FrcAggregation.c and CustomDpaHandler-BeamingAggregation.c
examples for the implementation details.

 9.4.2 DpaApiSetOTK

void DpaApiSetOTK ()

Available at [N] devices only. This API call sets 16 bytes long OTK (one-time key) stored at the
bufferRF[0…15] for the next OTK prebonding.

☼ See example CustomDpaHandler-OTK-Node.c for more details.

 9.4.3 DpaApiSleep

void DpaApiSleep (uns8 wdtcon)

Available at [N] devices only. Executes a controlled sleep with the specified watchdog timer setting.
Such repeated periods of sleep are typically used for low-power offline activities, e.g. beaming, waiting
for sensor measurement, etc. Before the 1st call, a variable FirstDpaApiSleep must be set. After the last
call the function DpaApiAfterSleep must be called. Please note the interrupts, integrated temperatures
sensor, and external EEPROM are disabled after the call. Brown-Out Reset (BOR) is disabled during
the execution and enabled on exit at TR-7xD transceivers.

The following example shows a typical use:

case DpaEvent_Idle:
 if (StartSleepMode())
 {
 FirstDpaApiSleep = TRUE;
 do {
 DpaApiSleep(WDTCON_1s);
 } while (!WakeUp());
 DpaApiAfterSleep();
 }
 break;

 9.4.4 DpaApiAfterSleep

void DpaApiAfterSleep ()

Available at [N] devices only. This function must be called after the last call of DpaApiSleep. The function
enables interrupts, integrated temperatures sensor, and external EEPROM. Please note the integrated
temperature sensor needs a 300 ms delay after calling this function to return a correct temperature value
(getTemperature IQRF OS function).

 9.4.5 DpaApiI2Cinit

void DpaApiI2Cinit(uns8 frequency)

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FrcAggregation.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BeamingAggregation.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-OTK-Node.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=gettemperature.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 98

This function initializes the I2C bus at master mode. The SCL line is available at GPIO RC3 and SDA
line at RC4 respectively at devices based on D series IQRF transceivers. Make sure the pull-ups are
connected to both these lines. The parameter frequency specifies the required I2C frequency. The
parameter is prepared using the I2CcomputeFrequency macro.

The following example shows a typical use of I2C functions:

DpaApiI2Cinit(I2CcomputeFrequency(100000 /* Hz */));

_DpaApiI2Cstart(0b1001011.0 /* MCP9802 8bit write address */);
DpaApiI2Cwrite(0 /* pointer: 0 = temperature */);
_DpaApiI2Cstop();

_DpaApiI2Cstart(0b1001011.1 /* MCP9802 8bit read address */);
int16 temperature;
temperature.high8 = _DpaApiI2Cread(1);
temperature.low8 = _DpaApiI2Cread(0);
_DpaApiI2Cstop();

DpaApiI2Cshutdown();

 9.4.6 DpaApiI2Cstart

void DpaApiI2Cstart(uns8 address)

Sends START signal and writes specified 8bit address to the I2C bus.

 9.4.7 DpaApiI2Cwrite

void DpaApiI2Cwrite(uns8 data)

Writes specified 8bit data to the I2C bus.

 9.4.8 DpaApiI2Cread

void DpaApiI2Cread(uns8 ack)

Reads 8bit data from the I2C bus. If bit ack.0 is set then ACK is sent, otherwise NACK.

 9.4.9 DpaApiI2Cstop

void DpaApiI2Cstop()

Sends STOP signal to the I2C bus.

 9.4.10 DpaApiI2CwaitForACK

void DpaApiI2CwaitForACK(uns8 address)

Waits till ACK is received from the specified I2C slave device. It internally executes the following code:

do {
 DpaApiI2Cstart(address);
 DpaApiI2CwaitForIdle();
} while (ACKSTAT && !I2CwasTimeout);
DpaApiI2Cstop();

 9.4.11 DpaApiI2Cshutdown

void DpaApiI2Cshutdown()

This function disables the I2C bus previously initialized by DpaApiI2Cinit.

 9.4.12 DpaApiI2CwaitForIdle

void DpaApiI2CwaitForIdle()

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 99

Waits till the I2C bus is not busy.

 9.4.13 DpaApiRandom

uns8 DpaApiRandom()

Generates next value of Random variable and returns its most significant byte. It is only available on [N]
devices.

 9.4.14 DpaApiMenu

uns8 DpaApiMenu (uns8 menu, uns8 flags)

Available only at TR-7xG [N]. The function is used when handling Beaming DPA Menu. The function
should be periodically called in the beaming function to catch opening Beaming DPA Menu by pressed
button. The return value is selected menu&menuItem from the menu. The parameter menu must be

DMENU_Beaming. The parameter flags is used to customize the menu content by ORing predefined

constants:

Enabling menu items:
• DMENU_Item_Implemented_User1

• DMENU_Item_Implemented_User2

• DMENU_Item_Implemented_GoBeaming

Adding confirmation to menu items:

• DMENU_Item_Confirm_User1

• DMENU_Item_Confirm_User2

Disabling menu items:

• DMENU_Item_Unimplemented_GoStandby

• DMENU_Item_Unimplemented_UnbondAndRestart

• DMENU_Item_Unimplemented_UnbondFactorySettingsAndRestart

Example

case DpaEvent_Idle:

 if (!startBeamingAtIdle)
 break;

 startBeamingAtIdle = FALSE;

 // Beaming loop
 FirstDpaApiSleep = TRUE;
 for (;;)
 {
 DoBeamingOncePerMinute();

 DpaApiSleep(WDTCON_1s);

 uns8 menuAndItem = DpaApiMenu(DMENU_Beaming, DMENU_Item_Implemented_User1);
 switch (menuAndItem)
 {
 case MakeDMenuAndItem(DMENU_Beaming, DMENU_Item_User1):
 DpaApiMenuIndicateResult(TRUE);
 ExecuteMyUser1MenuItem();
 break;

 case MakeDMenuAndItem(DMENU_Beaming, DMENU_Item_ConnectivityCheck):
 // Stop beaming sleeps
 DpaApiAfterSleep();
 // Voluntary indication of the TestRange execution

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 100

 pulsingLEDR();
 // Repeaters to test
 clearBufferINFO();
 bufferINFO[0 / 8] = 0b1111.1110; // 1...7
 // Do the test and result indication
 DpaApiMenuIndicateResult(DpaApiLocalFrc(FRC_Ping, TX_POWER_MAX));
 // Continue regular beaming sleeps
 FirstDpaApiSleep = TRUE;
 break;

 default:
 // Stop beaming sleeps
 DpaApiAfterSleep();
 // Execute menu
 DpaApiMenuExecute(menuAndItem);
 // Continue regular beaming sleeps
 FirstDpaApiSleep = TRUE;
 break;

 case MakeDMenuAndItem(DMENU_Beaming, DMENU_Item_None):
 // No menu item was selected
 break;
 }
 }

break;

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.4.15 DpaApiMenuIndicateResult

void DpaApiMenuIndicateResult (uns8 ok)

Available only at TR-7xG [N]. The function is used when handling Beaming DPA Menu. The function
must be called for the selected menu items that are optional and implemented in the Custom DPA
Handler. If the ok parameter is zero the error is indicated, otherwise OK is indicated. See example at

DpaApiMenu function.

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.4.16 DpaApiMenuExecute

void DpaApiMenuExecute (uns8 menuAndItem)

Available only at TR-7xG [N]. The function is used when handling Beaming DPA Menu. The function
must be called for the menu items that are executed by DPA. See example at DpaApiMenu function.
The parameter menuAndItem must have the value of the return value of DpaApiMenu.

☼ See example CustomDpaHandler-DpaMenu for more details.

 9.5 DPA API Variables

The following variables can be used within a custom DPA handler routine. The variables marked by
[readonly] are read-only. Writing to these variables will cause incorrect device behavior.

 9.5.1 bit IFaceMasterNotConnected

[readonly] Valid at [C] device. Equals 1 when the master interface device was not connected during
device startup.

In the case of the SPI interface, it is considered not connected when a Reset DPA Request is not read
during the startup process.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 101

In the case of the UART interface, it is considered not connected when there was no DPA message
received by the interface yet.

Please note that this flag might become 0 when a master interface device sends some data to the [C]
device later. The variable value is valid after the Init event.

☼ See example CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 9.5.2 bit NodeWasBonded

Valid at [N] devices. It is set to 1 during Device startup if the [N] was newly bonded.

☼ See example CustomDpaHandler-Bonding.c for more details.

 9.5.3 bit EnableIFaceNotificationOnRead

Valid at [N] devices. Setting to 1 enables sending DPA Notification to the interface master even in the
case of “read-only” DPA Request. The default value is 0.

 9.5.4 uns16 DpaTicks

Implemented at [C] device only. The value of this variable is decremented every 10 ms after the Init
event. The variable is driven by TMR6 driven by an internal PIC RC oscillator. The variable can be used
for the implementation of timing algorithms. As this 2-byte wide variable is modified internally within the
CPU interrupt routine the whole (both 2 bytes) variable should be accessed (either read or written) only
when an interrupt is disabled to ensure atomic access.

Example

case DpaEvent_Idle:
 // Is the timeout over?
 if (DpaTicks.15 != 0)
 {
 // Setup new 10s timeout
 GIE = 0;
 DpaTicks = 10 * 100L;
 GIE = 1;
…

☼ See example codes CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 9.5.5 uns8 LPtoutRF

Valid at LP [N] devices. Timeout when receiving RF packets in LP-RX mode. After a device startup, the
variable is filled with a respective value from TR Configuration at index 0x0A. See that chapter for more
details.

 9.5.6 uns8 ResetType

Identifies the type of reset (stored at UserReg0 upon module reset). See the Reset chapter at IQRF
User's Guide for more information.

 9.5.7 bit DSMactivated

Equals 1 if the device was maintained at DPA Service Mode (see Device Startup) when the device was
started last time. The variable is set even when DPA Service Mode was terminated by Reset or Run
RFPGM commands. The variable is not set when DPA Service Mode was terminated by Power-on
Reset.

 9.5.8 uns8 UserDpaValue

This variable is used to store user-defined DPA value. See Set DPA Param and UserDpaValue.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PulseLEDs.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bonding.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PulseLEDs.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 102

 9.5.9 uns8 NetDepth

[readonly] This variable is used at the ReceiveDpaResponse event to find out whether the received DPA
Response is intended for (terminated at) the current device (NetDepth == 1) or is to be forwarded
automatically by DPA to the higher network or interface (NetDepth >= 2).

☼ See example codes CustomDpaHandler-Coordinator-PollNodes.c for more details.

 9.5.10 bit LpRxPinTerminate

When set to 1 then LP [N] device discontinues packet reception when MCU pin PORTB.4 goes low

regardless of configuration LP timeout value at index 0x0A. See the setRFmode IQRF OS function for
more information. Immediately after the packet reception is discontinued the Idle event is raised. The
default value is 0.

 9.5.11 uns8 RxFilter

A variable used as a filter parameter of the checkRF IQRF OS function call at the main message DPA
loop. The variable value is read from the RF signal filter item at TR Configuration at the startup and can
be carefully modified at the runtime.

 9.5.12 uns16 BondingSleepCountdown

This variable can be modified at the event BondingButton (at TR-7xD) or at the event MenuActivated
(at TR-7xG) to adjust the time without a pressed standard bonding button before [N] goes into deep
sleep mode during bonding. The variable is internally zeroed when the bonding phase is initiated. The
variable counts down and when it reaches zero (after it is pre-decremented) then the deep sleep mode
is activated. A countdown unit is approximately 290 ms. When the variable is continuously set to 0 then
the device will never activate deep sleep mode. Also setting bit.6 at DPA configuration bits avoids
sleeping.

Example #1
The following example sets the time before going to sleep to 4 seconds:

// Was the BondingSleepCountdown just initiated?
#ifdef DpaEvent_BondingButton
case DpaEvent_BondingButton:
 if (BondingSleepCountdown == 0)
#endif

#ifdef DpaEvent_MenuActivated
case DpaEvent_MenuActivated:
 if (BondingSleepCountdown == 0)
#endif

 // Yes, set the requested timeout to 4 seconds
 BondingSleepCountdown = 4000 / BONDING_SLEEP_COUNTDOWN_UNIT;
 break;

Example #2
The example disables the bonding button timeout at all:

#ifdef DpaEvent_BondingButton
case DpaEvent_BondingButton:
#endif

#ifdef DpaEvent_MenuActivated
case DpaEvent_MenuActivated:
#endif
 BondingSleepCountdown = 0;
 break;

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PollNodes.c.html
https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=setrfmode.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 103

 9.5.13 uns16 Random

[readonly] This variable contains a non-zero pseudo-random value. It is updated on every event except
Interrupt. It is only available on [N] devices. See also DpaApiRandom.

 9.5.14 bit AsyncReqAtCoordinator

Valid at [C] devices. When set to 1 then [C] can execute asynchronous DPA Requests received from
[N]. The default value is 0.

 9.5.15 bit NonroutedRfTxDpaPacket

When set to 1 then only the very next call of DpaApiRfTxDpaPacket sends a non-routed packet. This
feature is used for beaming purposes. It is only available at [N] devices.

 9.5.16 uns8 DpaValue

[readonly] DPA value from the received packet or just to be sent to the interface.

 9.5.17 uns8 I2Ctimeout

Specifies an optional timeout at the I2C bus. The unit is approximately 0.7 ms. The default zero value
specifies no timeout. A variable I2CwasTimeout is set when the I2C bus timeout occurs after calling
DpaApiI2Cstart, DpaApiI2Cwrite, DpaApiI2Cread, DpaApiI2Cstop, DpaApiI2CwaitForACK, and
DpaApiI2CwaitForIdle.

 9.5.18 bit I2CwasTimeout

This indicates that I2C bus timeout occurred. See uns8 I2Ctimeout.

 9.5.19 bit FirstDpaApiSleep

See DpaApiSleep.

 9.6 Examples

Find below a list of all examples. The next chapters describe selected Custom DPA Handler examples
in more detail.

CustomDpaHandler-AsyncRequest - Sending asynchronous DPA Request from [N] to the [C].
CustomDpaHandler-Autobond - Autobonding example.
CustomDpaHandler-BeamingAggregation.c - FRC aggregation of the IQRF Standard Sensor data.
CustomDpaHandler-Bonding - Custom bonding.
CustomDpaHandler-BondingButton - Custom bonding button.
CustomDpaHandler-BondingNoSleep - Bonding without sleep.
CustomDpaHandler-Bridge-SPI - Bridging handler to the external device using SPI.
CustomDpaHandler-Bridge-UART - Bridging handler to the external device using UART.
CustomDpaHandler-Buttons - Handling multiple hardware buttons with individual debouncing.
CustomDpaHandler-Coordinator-FRCandSleep - Regular FRC & sleep controlled by the [C].
CustomDpaHandler-Coordinator-PollNodes - Polling data from Nodes by the [C].
CustomDpaHandler-Coordinator-PulseLEDs - Pulsing LEDs at Nodes controlled by the [C].
CustomDpaHandler-Coordinator-ReflexGame - Simple reflex game.
CustomDpaHandler-CustomIndicate - Customized indication.
CustomDpaHandler-DDC-RE01 - DDC-RE01 demo.
CustomDpaHandler-DDC-SE01 - DDC-SE01 demo.
CustomDpaHandler-DDC-SE01_RE01 - DDC-SE01 and DDC-RE01 demo.
CustomDpaHandler-DpaMenu – DPA Menu demo.
CustomDpaHandler-FrcAggregation.c - FRC aggregation example.
CustomDpaHandler-FRC-Minimalistic - The smallest FRC handler.
CustomDpaHandler-FRC - Custom FRC commands.
CustomDpaHandler-HookDpa - Intercepting DPA Requests and Responses.
CustomDpaHandler-LED-Green-On - Diagnostic „green LED ON“.
CustomDpaHandler-LED-MemoryMapping - Mapping LED to the RAM peripheral.
CustomDpaHandler-LED-Red-On - Diagnostic „red LED ON“.
CustomDpaHandler-LED-UserPeripheral - LED user peripheral.

https://doc.iqrf.org/DpaTechGuide/430/examples/index.html
https://doc.iqrf.org/DpaTechGuide/430/examples/!ReadMe.txt
https://doc.iqrf.org/DpaTechGuide/430/examples/index.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-AsyncRequest.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Autobond.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BeamingAggregation.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bonding.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BondingButton.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-BondingNoSleep.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bridge-SPI.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bridge-UART.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Buttons.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-FRCandSleep.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PollNodes.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-PulseLEDs.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-ReflexGame.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-CustomIndicate.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DDC-RE01.c.html
https://www.iqrf.org/products/development-tools/development-kits/ddc-re-01
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DDC-SE01.c.html
https://www.iqrf.org/products/development-tools/development-kits/ddc-se-01
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DDC-SE01_RE01.c.html
https://www.iqrf.org/products/development-tools/development-kits/ddc-se-01
https://www.iqrf.org/products/development-tools/development-kits/ddc-re-01
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-DpaMenu.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FrcAggregation.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC-Minimalistic.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-HookDpa.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-Green-On.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-MemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-Red-On.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-UserPeripheral.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 104

CustomDpaHandler-LocalFRC - Local FRC Controller and Actuator.
CustomDpaHandler-LocalFRC-Controller - Local FRC Controller.
CustomDpaHandler-MultiResponse - Multiple DPA Responses to the one DPA Request.
CustomDpaHandler-OTK-Node - OTK prebonding example.
CustomDpaHandler-Peer-to-Peer - Peer-to-peer receiver.
CustomDpaHandler-PeripheralMemoryMapping - Mapping MCU peripheral to the RAM peripheral.
CustomDpaHandler-PIRlighting - PIR controlled lighting.
CustomDpaHandler-ScanRSSI - RSSI measurement among Nodes.
CustomDpaHandler-SelfLoadCode.c - The handler switches itself to the other handler.
CustomDpaHandler-SensorBeaming.c - Beaming sensor example.
CustomDpaHandler-SPI - Custom SPI Peripheral.
CustomDpaHandler-Template-OptimizedSwitch - Optimized custom DPA Handler template, all events.
CustomDpaHandler-Template-OptimizedSwitch-Coordinator - Same as above but for Coordinator.
CustomDpaHandler-Template-OptimizedSwitch-Node - Same as above but for Node only.
CustomDpaHandler-Template - Custom DPA Handler template, all events listed.
CustomDpaHandler-Template-Coordinator - Custom DPA Handler template but for Coordinator only.
CustomDpaHandler-Template-Node - Custom DPA Handler template optimized but for Node only.
CustomDpaHandler-Timer - Using PIC HW timer.
CustomDpaHandler-TimerCalibrated - Using calibrated PIC HW timer.
CustomDpaHandler-UART - Connecting an external device using an embedded UART peripheral.
CustomDpaHandler-UARTrepeater - Sample UART repeater example.
CustomDpaHandler-UartHwRxSwTx - Software UART TX at embedded peripheral to free PWM pin.
CustomDpaHandler-UserEncryption - AES-128 demonstration.
CustomDpaHandler-UserPeripheral-18B20 - Dallas 18B20 temperature sensor as peripheral.
CustomDpaHandler-UserPeripheral-18B20-Idle - Dallas 18B20 sensor operated in the background.
CustomDpaHandler-UserPeripheral-18B20-Multiple - Multiple Dallas 18B20 sensors as peripheral.
CustomDpaHandler-UserPeripheral-ADC - ADC user peripheral.
CustomDpaHandler-UserPeripheral-HW-UART - User HW UART peripheral.
CustomDpaHandler-UserPeripheral-I2C - User peripheral connected to I2C.
CustomDpaHandler-UserPeripheral-I2Cmaster - I2C master peripheral.
CustomDpaHandler-UserPeripheral-McuTempIndicator - Internal PIC temperature indicator.
CustomDpaHandler-UserPeripheral-PWM - PWM user peripheral.
CustomDpaHandler-UserPeripheral-PWMandTimer - PWM user peripheral together with a timer.
CustomDpaHandler-UserPeripheral-SPImaster - User SPI master peripheral.
CustomDpaHandler-UserPeripheral-SPIslave - User SPI slave peripheral.
CustomDpaHandler-UserPeripheral - Basic user peripheral.
CustomDpaHandler-XLPstandBy - Putting [Ns] into XLP “sleep” mode with RF wake up.
DpaIoSetup - IO Setup demonstration.

 9.6.1 Bonding

This example for TR-7xD shows how to implement a custom (un)bonding procedure inside the Reset
event. The code behaves the same way the default (un)bonding procedure does, except the button is
(might be) assigned to the different MCU GPIO pin and the [N] is not put to sleep when the button is not
pressed for a longer time. The example supports three bonding types: Smart Connect, and traditional
“button” bonding.

→ Self-study tip: Modify the code in the way the [N] requests bonding when the button is pressed only
when the [N] does not sense a stronger RF signal thus implementing the List-Before-Talk technique.
 Hint: Use checkRF IQRF OS function to sense RF signal.

 9.6.2 Coordinator-FRCandSleep

This example shows autonomous [C], which regularly sends a predefined FRC command
Acknowledged broadcast - bytes to the network. It might become a seed of a sophisticated battery-
powered long-life sensor network.

The FRC command serves two purposes. Firstly it reads the temperature value from onboard
temperature sensors at the Nodes, which is its default return FRC value. Secondly, it utilizes the
acknowledged broadcast feature to put Nodes in the sleep state after they return the temperature value
via FRC. The embedded acknowledged DPA Request in the FRC command is an ordinary Sleep
command. The [C] performs delay using the DpaTicks API variable including the safety gap after both

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LocalFRC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LocalFRC-Controller.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-MultiResponse.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-OTK-Node.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Peer-to-Peer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PIRlighting.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-ScanRSSI.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-SelfLoadCode.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-SensorBeaming.c.html
https://doc.iqrf.org/IQRF-Standards/StandardSensor/
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-SPI.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-OptimizedSwitch.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-OptimizedSwitch-Coordinator.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-OptimizedSwitch-Node.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-Coordinator.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Template-Node.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Timer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-TimerCalibrated.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UART.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UARTrepeater.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UartHwRxSwTx.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserEncryption.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-18B20.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-18B20-Idle.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-18B20-Multiple.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-ADC.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-HW-UART.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-i2c.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-I2Cmaster.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-McuTempIndicator.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-PWM.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-PWMandTimer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-SPImaster.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-SPIslave.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-XLPstandBy.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DpaIoSetup.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Bonding.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-Coordinator-FRCandSleep.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 105

Send and Extra result commands are executed inside the Idle event handler. Also please note a small
delay inside the Init event to allow the external interface master to boot. This is necessary in the case
of IQRF gateways.

→ Self-study tip: Change sleeping time to 2 minutes.

→ Self-study tip: Modify the code to return the last RSSI value instead of temperature.
 Hint: You will have to handle the FrcValue event and Acknowledged broadcast - bytes FRC command
code.

→ Self-study tip: Utilize the Coordinator’s peripheral RAM for passing a set of Nodes to return the
FRC byte value from. This is useful in the case of bigger networks (with the address above 62, see
Send).
 Hint: You will have to substitute using Send to Send Selective.

→ Self-study tip: Modify the code to return the state of the IQRF button.
 Hint: You will have to substitute using Acknowledged broadcast - bytes for Acknowledged broadcast -
bits and add a simple FrcValue event handler.

 9.6.3 FRC-Minimalistic

This is a truly minimalistic code example. It shows literally at only two lines of C code how to implement
a custom FRC command. Its code is FRC_USER_BIT_FROM = 0x40. It returns 2nd bit equals 1 if the IQRF

button is pressed, otherwise, it returns 0.

Following code extract shows the key part of the handler:

if (GetDpaEvent() == DpaEvent_FrcValue && _PCMD == FRC_USER_BIT_FROM && buttonPressed)
 responseFRCvalue.1 = 1;

The code checks:

• for event DpaEvent_FrcValue,

• for custom FRC command code FRC_USER_BIT_FROM and

• for the button being pressed.

If all conditions are met then it sets the 2nd bit returned by FRC to 1. That’s all.

→ Self-study tip: Modify the code in the way the FRC command returns the bit indicating whether the
green LED is switched on or off.

 9.6.4 LED-MemoryMapping

The example shows the controlling of physical LEDs at TR by the peripheral RAM. A custom command
byte is written to the 1st or 2nd byte of the RAM peripheral controls the red LED or green red respectively.
It allows switching LED on, to switch off, to pulse, or to start pulsing.

→ Self-study tip: Currently the example always controls both LEDs regardless of the part of the RAM
peripheral that was written to. Modify the code so it will check the actual byte range written to the RAM
peripheral and control the appropriate LED(s) only.
 Hint: Use the ReceiveDpaRequest event to find out the address and length of data written to the
peripheral RAM.

 9.6.5 PeripheralMemoryMapping

This example implements the bidirectional mapping of several MCU peripherals to the peripheral RAM.
It allows controlling LEDs, reading the button’s state, and reading temperature values. It utilizes
peripheral RAM.

→ Self-study tip: Currently the example always controls both LEDs or reads buttons & temperature
sensors regardless of the part of RAM peripheral memory space that was written to or read from
respectively. Modify the code so it will work with the peripheral(s) that correspond to the peripheral
memory range that was read from or written to.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC-Minimalistic.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-LED-MemoryMapping.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-PeripheralMemoryMapping.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 106

 9.6.6 UserPeripheral-18B20

This example demonstrates connecting the [N] to the 1-Wire device. It might be a starting application to
create a sensor network having external temperature sensors.

The example uses a popular temperature sensor Dallas 18B20. The sensor is present at the DDC-SE-
01 sensor kit so it is very easy to create a device operating the sensor at the lab.

Deep knowledge of the 1-Wire protocol is necessary to understand the whole source code.

→ Self-study tip: Modify the code to return the temperature value using the user FRC command.
 Hint: As the 18B20 conversion time exceeds the maximum 40 ms FRC response time both Set FRC
Params at [C] side and FRC response time at [N] side must be used.

 9.6.7 UserPeripheral-18B20-Idle

This is a more advanced version of the previous UserPeripheral-18B20 example. This version performs
a repetitive reading of the temperature value from the 1-Wire sensor at the Idle event in the background
so the temperature value is available anytime without any delay. This simplifies the implementation of
the user FRC command.

 9.6.8 UserPeripheral-ADC

There is no embedded ADC peripheral implemented at DPA. The reason is that there are many diverse
requirements (number of channels, channel selection, conversion time, conversion precision, etc.) to
the actual ADC peripheral implementation.

This example implements analog to digital conversion from two channels. Intentionally these channels
can be driven directly by a photoresistor and a potentiometer and available at DDC-SE-01.

→ Self-study tip: Implement user two-byte FRC command that will return MSB values from both ADC
channels at once.

 9.6.9 UserPeripheral-HW-UART

This example shows how to implement custom HW UART with circular buffers i.e. not using embedded
UART peripheral. This is necessary in case the UART must be used when handling custom peripheral
or during any event including an Interrupt event.

→ Self-study tip: implement variable UART baud rate when UART is opened.

 9.6.10 UserPeripheral-i2c

The example implements a user peripheral that returns a value read from a connected I2C device. The
code can directly read a temperature value from the MCP9802 temperature sensor presented at DDC-
SE-01.

Deep knowledge of the I2C protocol is necessary to understand the source code in full detail.

→ Self-study tip: Implement user byte FRC command to return value from an I2C device. Pay attention
to the maximum FRC response time.

 9.6.11 UserPeripheral-PWM

This is a copy of the implementation of the formerly embedded PWM peripheral that was available only
in the demo version. Use it as a template for your own PWM implementation. See also UserPeripheral-
PWMandTimer.c.

 9.6.12 UserPeripheral-SPImaster

This example shows how to connect the SPI slave device to the TR [N] so the [N] behaves as SPI
master. IQRF OS SPI support implements only the SPI slave side. SPI slave device is controlled using
a custom command passed to the custom DPA peripheral. See the source code for full details.

→ Self-study tip: Connect ordinary another TR [N] with DPA SPI peripheral being enabled thus playing
the role of SPI slave. Try to communicate bi-directionally between the two Nodes.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-18B20.c.html
https://www.iqrf.org/weben/index.php?sekce=products&id=ddc-se-01&ot=development-tools&ot2=development-kits
https://www.iqrf.org/weben/index.php?sekce=products&id=ddc-se-01&ot=development-tools&ot2=development-kits
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-18B20-Idle.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-ADC.c.html
https://www.iqrf.org/weben/index.php?sekce=products&id=ddc-se-01&ot=development-tools&ot2=development-kits
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-HW-UART.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-i2c.c.html
https://www.iqrf.org/weben/index.php?sekce=products&id=ddc-se-01&ot=development-tools&ot2=development-kits
https://www.iqrf.org/weben/index.php?sekce=products&id=ddc-se-01&ot=development-tools&ot2=development-kits
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-PWM.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-PWMandTimer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-PWMandTimer.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-SPImaster.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 107

 9.7 Migration Notes to DPA 3.03

Please find below important topics when migrating Custom DPA Handler to DPA 3.03+ from DPA 3.02.

• Custom DPA Handler implementing FRC functionality must be recompiled, because IQRF OS
variables for returning FRC values (responseFRCvalue*) changed their addresses and they
currently overlap at the same address.

• If the Custom DPA Handler implements a custom bonding at the Reset event, then please
review the handler code according to the Bonding example to correctly support all required
types of bonding.

• Do necessary changes according to DPA Release Notes.

• Test your Custom DPA Handler with this DPA release before production.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 108

 10 DPA Peer-to-Peer
DPA Peer-to-Peer (DP2P from now) allows communicating with bonded [Ns] at the existing network in
non-network mode. Unlike DSM no reset or restart of the [N] is needed. DP2P is useful for inventorying
the network (e.g. localization of the [Ns] after autonetwork), device maintenance, remote control, etc.
Communication runs on the network A channel and the data is encrypted by an AES-128 algorithm
using an access password as a key. DP2P must be enabled in the [N] configuration to work. All packets
use the _DPAF flag and DPA reserves the right to use this flag exclusively only for DP2P purposes in
case of non-networking packets.

The DP2P protocol consists of one DP2P Request packet (it contains DPA Request that is executed at
the addressed [Ns]) and then DP2P Response Handshake packets exchanged between the addressed
and reachable [Ns] and the device, that sent DP2P Request.

 10.1 DP2P Request

The DP2P Request stored at bufferRF has the following structure:

typedef struct
{
 uns8 Header[3]; // 0x000000
 uns8 SelectedNodes[30];
 uns8 SlotLength;
 uns8 ResponseTxPower;
 uns8 Reserved;
 uns16 HWPID;
 uns8 PDATA[sizeofBufferRF - (3+30+1+1+1)*sizeof(uns8) - (1)*sizeof(uns16)];
} STRUCTATTR TDP2Prequest;

Header Must consist of 3 zeros.
SelectedNodes Specifies addressed [Ns] that should send DP2P Response back. See identically

named field at Send Selective command. Communication with prebonded [Ns] is
not possible.

SlotLength Specifies the timeslot length for the DP2P Response Handshake. The unit is 10
ms. If the default value 0 is used then the timeslot length to accommodate
common DPA Request is chosen (see table below). Other values specify a
custom timeslot length when the DPA Request might take a longer time (e.g.
UART Write & Read) or by contrast to shorten the timeslot if the DPA Request
takes short time and its response is also short (e.g. LED Pulse).

ResponseTxPower RF output power used to send DP2P Invite and DP2P Response by [Ns]. Valid
numbers are 0-7.

HWPID HWPID of the DPA Request.
PDATA PData part of the DPA Request.

Also, the following variables must be correctly assigned before sending the DP2P Request:

_PNUM PNUM of the DPA Request to execute at [Ns].
_PCMD PCMD of the DPA Request to execute at [Ns].
DLEN Must equal 64.
PPAR Length the DPA Request data payload at the PDATA field.

RF mode used to send DP2P Request depends on the network type. Example of sending DP2P
Request:

// Set RF Mode
if ("is STD network")
 setRFmode(_WPE | _RX_STD | _TX_STD | _STDL);
if ("is STD+LP network")
 setRFmode(_WPE | _RX_STD | _TX_LP);

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 109

// DP2P Request variable
TDP2Prequest DP2Prequest @ bufferRF;
// Prepare DPA Request
// We will read 10 bytes of EEPROM from address 1
_PNUM = PNUM_EEPROM;
_PCMD = CMD_EEPROM_READ;
_DpaMessage.MemoryRequest.Address = 1;
_DpaMessage.MemoryRequest.ReadWrite.Read.Length = 10;
// DPA request data length
PPAR = sizeof(_DpaMessage.MemoryRequest.Address) +
 sizeof(_DpaMessage.MemoryRequest.ReadWrite.Read);

// Save the prepared PData of the DPA Request for later copying
copyBufferRF2INFO();
// Clear DP2Prequest (it clears the Header and SelectedNodes fields)
clearBufferRF();
// Move the saved PData of the DPA Request to the correct place at the DP2P Request
memoryOffsetTo = offsetof(TDP2Prequest, PDATA);
copyBufferINFO2RF();

// Select Node #2 to respond
DP2Prequest.SelectedNodes[0].2 = TRUE;
// Select Node #11 to respond
DP2Prequest.SelectedNodes[1].3 = TRUE;
// Use default timeslot length
DP2Prequest.SlotLength= 0;
// Set TX power for the DP2P Response
DP2Prequest.ResponseTxPower = TX_POWER_MAX;
// Any HWPID is OK
DP2Prequest.HWPID = HWPID_DoNotCheck;
// Set the DP2P packet length
DLEN = sizeof(DP2Prequest);
// Use Access Password for encryption
encryptByAccessPassword = TRUE;
// Encrypt the DP2P Request
encryptBufferRF(sizeof(DP2Prequest) / 16);
// Set RF Flags
PIN = _DPAF_MASK;
// And finally send DP2P Request
RFTXpacket();

 10.2 DP2P Response Handshake

DP2P Response Handshake consists of 3 special DP2P packets described below. Every [N] addressed
by the SelectedNodes field of the DP2P Request has a dedicated timeslot for DP2P Response
Handshake after it receives DP2P Request. The index of the timeslot equals the index of the bit
corresponding to the [N] in the SelectedNodes field. If [N] does not receive the DP2P Request then its
timeslot remains empty i.e. unutilized. All following packets are sent using _TX_STD without _STDL

mode.

Note: in the pictures below we interchange the term Timeslot for the term DP2P Response Handshake
as it is shorter to write.

 Timeslot #0 Timeslot #1 Last timeslot

DP2P Request 1st selected [N] 2nd selected [N] … The last selected [N]

For instance, if only two [Ns] #2 and #11 from the above example are selected, then [N] #2 uses the 1st
timeslot while [N] #11 has the 2nd (last) one.

At the beginning of the timeslot i.e. DP2P Response Handshake, the [N] first sends DP2P Invite, then
waits for the DP2P Confirm, and finally sends DP2P Response. Invite and Confirm packets are used to
protect the communication against resending previously sniffed DP2P Request packets. Please see the
details below and DP2Papp.c and DP2Papp-UART.c examples for the implementation.

https://doc.iqrf.org/DpaTechGuide/430/examples/DP2Papp.c.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DP2Papp-UART.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 110

DP2P Response Handshake detail:

Timeslot #n-1 Timeslot #n Timeslot #n+1

 DP2P Invite DP2P Confirm DP2P Response

The predefined length of the DP2P Response Handshake timeslots is 110 ms (DP2P_TIMESLOT). The

non-zero field SlotLength in the DP2P Request can be used to specify a different length.

 10.2.1 DP2P Invite

The [N] sends this packet with a Rand field containing random content.

// DP2P invite packet.
typedef struct
{
 uns8 Header[3]; // 0x000001
 uns8 NADR;
 uns8 Rand[12];
} STRUCTATTR TDP2Invite;

 10.2.2 DP2P Confirm

When the device, that sent the DP2P Request, receives the DP2P Invite, it transforms it into DP2P
Confirm just by modifying the header and sends it back to the [N] using _TX_STD without _STDL mode.

When [N] receives DP2P Confirm with the same random data as DP2P Invite, it can then safely execute
the DPA Request and then reply with DPA DP2P Response at the end of its timeslot.

typedef struct
{
 uns8 Header[3]; // 0x000003
 uns8 NADR;
 uns8 Rand[12];
} STRUCTATTR TDP2Confirm;

 10.2.3 DP2P Response

The DP2P Response has the following structure:

typedef struct
{
 uns8 Header[3]; // 0xFfFfFf
 uns8 NADR;
 uns8 PDATA[DPA_MAX_DATA_LENGTH];
} STRUCTATTR TDP2Presponse;

Header Consist of 3 bytes 0xFF. The Header is used for packet validation purposes.
NADR Address of the responding [N].
PDATA PData part of the DPA Response.

Also, the following variables are received:

_PNUM PNUM of the original DPA request.
_PCMD PCMD of the original DPA request with the most significant bit set to indicate DPA

Response.
PPAR Equals effective packet length (i.e. length to the PData payload plus length of the

Header and NADR fields).
DLEN Equals effective packet length (PPAR) rounded up to the 16-byte block (to enable

AES-128 decryption).

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 111

 11 DPA in Practice
Refer to the following chapters for useful DPA procedures.

 11.1 Network Deployment

This chapter is a kind of checklist to go through when deploying the IQMESH network with DPA. Please
note, that some steps might not be obligatory as they are already fulfilled (e.g. installed devices are
already preloaded with DPA plug-in and Custom DPA Handler). We suppose IQRF IDE is used as a
tool.

1. Plan your network in terms of size, the number of (non-)routing devices, etc. If non-routing
devices are present then it is recommended to assign them the logical addresses from the
compact address interval at the top of the address space during bonding. This allows us to
effectively use the parameter MaxAddr at Discovery.

2. Download required DPA plug-ins based on Interface, and TR type used. Upload them to the
devices.

3. Get ready your Custom DPA Handlers for all devices. Make sure the handler code states the
unique HWPID of the device. Some handlers do not have any internal application logic code
except stating HWPID but also contain IO Setup. Upload the handlers to the devices.

4. Configure the devices:
a. The configuration very often differs between [C] and [N]s and even between various

[N]s.
b. Start with a default configuration offered by IQRF IDE.
c. We recommend setting a unique access password for each network.
d. Do frequency planning, i.e. set the working channel that is not used and jammed.
e. Enable all needed peripherals (do not forget to enable FRC at [C] and disable it at [N]s).
f. Make sure to enable the correct SPI/UART peripheral/interface.
g. Enable IO Setup, Custom DPA Handler, disable routing, etc. as needed.

5. Bond [N]s to the [C]. This process depends on the used devices as it might be implemented
differently at every handler. Also, Autonetwork is available. In general, the process is somehow
initiated at [C] and [N] sides (e.g. by pressing a button). Sometimes devices are bonded before
their physical installation, sometimes at the final place. Before the bonding of the new network,
it is recommended to execute Clear all bonds at [C]. Of course, [N]s must not be already bonded
before bonding. Also, CATS from IQRF IDE can be used for (un)bonding.

6. Run Discovery after all devices are successfully bonded and installed:
a. Use a lower RF output power than the one used during normal network operation.
b. The duration of the discovery process depends on the network size and its topology. In

the case of complicated networks, it might take 1 hour.
c. In the case of a homogeneous network, it is not always necessary to discover all devices

(e.g. 95 from out of 100 might be OK) but all devices must be accessible.
d. When the network contains non-routing devices then all routers must be discovered.
e. After the discovery is finished, test communication with all devices.
f. The Discovery result (number of discovered devices, the number of zones, parents)

varies at the time because of an actual RF environment.
g. Discovery must be repeated every time the topology (new, removed, and/or moved

router) and/or RF conditions (e.g. a new RF obstacle) change.
h. Note: discovery is an integral part of the Autonetwork feature.

7. Enumerate the network and save information (IQRF OS and DPA versions, configuration, etc.)

into separate files for future reference.
8. Back up the network data from all devices ([C] and [N]s). The backup is required for an optional

future cloning of the damaged device.
9. To protect your device from unauthorized CATS access you can set your own access password.

 11.2 Over The Air (OTA) upgrade of IQRF OS and DPA

Please follow this checklist to upgrade both IQRF OS and DPA with TR-7xD over the air using the IQRF
IDE. IQRF IDE uses public DPA commands described in this document to accomplish the upgrade.
Select All at Tools/Options/Environment Options/IQMESH Network Manager/Log background DPA
communication to see the commands at Terminal Log panel.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 112

1 Uploading a special OTA Custom DPA Handler to the Coordinator and all Nodes
1.1 Go to Tools / IQMESH Network Manager / Control / Upload at IQRF IDE.
1.2 Browse a file CustomDpaHandler-ChangeIQRFOS-7xD-Vvvv-yymmdd.iqrf at Source File group
box. The file can be found at the IQRF Startup Package of the IQRF OS target version in the folder
Development\DPA\OTA_upgrade.
1.3 Set External EEPROM Address to 0x800 at the Upload group box.
1.4 Select All Nodes and set HWPID to 0xFFFF at the Destination Device group box.
1.5 Press the Upload button at the group box Upload to upload the selected file to the external
EEPROM at all Nodes.
1.6 Press the Verify button to check the uploaded file integrity.
1.7 Upload and verify the file to the Nodes that report an integrity error until no error is reported.
1.8 Press the Load button to write the handler from EEPROM to the flash memory at all Nodes.
1.9 Select Coordinator at the Destination Device group box.
1.10 Press the Upload button at the group box Upload to upload the selected file to the external
EEPROM at the Coordinator.
1.11 Press the Verify button to check the uploaded file integrity and then Load to write it to the flash
memory at the Coordinator.

2 Enabling the special OTA Custom DPA Handler at the Coordinator and Nodes
2.1 Go to Tools / IQMESH Network Manager / Control / TR Config.
2.2 Uncheck the Source File group box if it is checked.
2.3 Select All Nodes and set HWPID to 0xFFFF at the Destination Device group box.
2.4 Press the Configure TR button at the Command group box. A TR Configuration window will open.
2.5 Enable Custom DPA Handler at the DPA tab and press Upload. Press Try Selected if the
configuration wizard reports an error writing configuration to some Nodes. Close the configuration
window.
2.6 Press Restart at the Command group box to restart all Nodes.
2.7 Select Coordinator at the Destination Device group box.
2.8 Press the Configure TR button at the Command group box. A TR Configuration window will open.
2.9 Enable Custom DPA Handler at the DPA tab and press Upload. Close the configuration window.
2.10 Press Restart at the Command group box to restart the Coordinator.
2.11 Refresh a table at the Table View tab and check that an HWPID of all network members equals
0xC05E.

3 Uploading a change file to the Coordinator and all Nodes.
3.1 Go to Tools / IQMESH Network Manager / Control / Upload at IQRF IDE.
3.2 Browse a file ChangeOS-TR7x-ooo(oooo)-nnn(nnnn)-Vooo+Node+xxx-Vnnn+Node+xxx.bin (ooo
specifies original IQRF OS and DPA version while nnn specifies new IQRF OS and DPA version
respectively; xxx specifies required interface). The file can be found at the IQRF Startup Package in the
folder Development\DPA\OTA_upgrade.
3.3 Set External EEPROM Address to 0x800 at the Upload group box.
3.4 Select All Nodes at the Destination Device group box. The HWPID is set to 0xC05E automatically.
3.5 Continue according to 1.5.-1.8.
3.6 Browse a file ChangeOS-TR7x-ooo(oooo)-nnn(nnnn)-Vooo+Coordinator+xxx-
Vnnn+Coordinator+xxx.bin (ooo specifies original IQRF OS and DPA version while nnn specifies new
IQRF OS and DPA version respectively; xxx specifies required interface). The file can be found at the
IQRF Startup Package in the folder Development\DPA\OTA_upgrade.
3.7 Continue according to 1.9.-1.11.

4 Finishing up
4.1 Both IQRF OS and DPA are upgraded. The network is working.
4.2 Refresh and check the network map from the Coordinator.
4.3 Follow chapter 1 to upload back your normal Custom DPA Handlers or follow chapter 2. to disable
Custom DPA Handler on the devices that do not use it.
4.4 Follow chapter 2 to set an Access password and/or User Key at the TR Configuration of all devices
if they were upgraded from IQRF OS 3.0x.
4.5 Enumerate the network, check it, and save the enumeration.
4.6 Backup the network and save the backup file.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 113

 11.3 Code Upload

DPA supports uploading executable code to the devices as well as upgrading IQRF OS at the devices
over the network without a need to connect the device to the HW programmer. In general, the code
image or the IQRF OS change file must be first stored in the external EEPROM at the device and then
a corresponding DPA Request does the job. The next paragraphs describe how to proceed from the
programmer’s point of view.

 11.3.1 Storing Code at External EEPROM

Code image or the IQRF OS change file must be stored in the external EEPROM using a series of
Extended Write commands.

When Custom DPA Handler should be uploaded using LoadCode command then a .hex file containing
the handler code must be stored in the external EEPROM. See LoadCode and Custom DPA Handler
Code at .hex File for more details about decoding the file.

When IQRF plug-in containing an e.g. newer version of DPA or IQRF OS patch is to be loaded then the
content of the .iqrf file has to be stored in the external EEPROM. See LoadCode for more details about
decoding the file.

If IQRF OS change is to be executed then a special handler must be active and the corresponding .bin
file containing the IQRF OS change data must be stored in the external EEPROM. See IQRF OS Change
for more details.

When storing the data in the external EEPROM make sure that other data are not overwritten. That
could be another upload data, handler operation data, or IO Setup. Precise planning of the external
EEPROM content is recommended.

It is also recommended to plan the whole upload or change process in the way that all required data
(active handler, IQRF OS change handler, IQRF plug-in DPA, IQRF OS change file) are first stored in
the external EEPROM and then used to minimize the code upload time. Some of the items at the external
EEPROM may take up to a few kilobytes and it takes a considerable time to store them in the even small
network.

 11.3.2 Executing Code Upload

Once the content of the .hex or .iqrf file is stored in the external EEPROM then the request LoadCode
can be executed at the device to load the code. We recommend first running the command to check the
checksum of the data at the external EEPROM only to make sure the code upload will not later fail. In
case more devices are to load the code, it is useful to use the byte FRC command Memory read plus 1
to read the result of the checksum check from multiple devices instead of individually polling each device
one by one. When FRC is used then it is necessary to use Send Selective instead of Send in case of a
larger network. When all devices have the correct data at external EEPROM ready then finally the
request LoadCode can be fully executed to perform the desired code upload. To run the request at
selected devices only then specific HWPID or Acknowledged broadcast - bits with Send Selective are
to be used. Pay special attention when the former or new uploaded handler requires its data to be stored
at the internal and/or external EEPROM. See LoadCode for more details.

 11.3.3 Executing IQRF OS Change

Changing the IQRF OS version is very similar to loading the code described above. The difference is
that a special custom DPA handler must be used. See IQRF OS Change for more details. Apart from
changing only the IQRF OS version, the process can also change the DPA version at the same time. It
implies that the current normally used custom handler must be replaced and then returned. We
recommend storing these items in the external EEPROM first before the IQRF OS change is performed:

1. Image of the special handler CustomDpaHandler-ChangeIQRFOS.iqrf,
2. IQRF OS change file and
3. Image of the normally used custom DPA handler.

First, upload the special handler from item No. 1 by the process described above. Then similarly (to load
the code) check that item No. 2 from the above list is correctly stored in the external EEPROM. In this
case, use a command of the custom peripheral implemented at the special handler for the check. Again

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 114

the FRC can be used to verify the content at more devices in one stroke. When the content is OK then
run the command again to perform the real IQRF OS change. When the change is finished then Memory
read plus 1 can be used to check the IQRF OS version or the build number (checking the lower byte of
the build number is enough) from more devices at one go. Finally, return the normally used custom DPA
handler stored at item No. 3 back.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 115

 12 Constants
All symbols and constants are defined in header files DPA.h and DPAcustomHandler.h.

 12.1 Peripheral Numbers

#define PNUM_COORDINATOR 0x00
#define PNUM_NODE 0x01
#define PNUM_OS 0x02
#define PNUM_EEPROM 0x03
#define PNUM_EEEPROM 0x04
#define PNUM_RAM 0x05
#define PNUM_LEDR 0x06
#define PNUM_LEDG 0x07
#define PNUM_IO 0x09
#define PNUM_THERMOMETER 0x0A
#define PNUM_UART 0x0C
#define PNUM_FRC 0x0D

#define PNUM_USER 0x20 // Number of the 1st user peripheral
#define PNUM_USER_MAX 0x3E // Number of the last user peripheral
#define PNUM_MAX 0x7F // Maximum peripheral number
#define PNUM_ERROR_FLAG 0xFE

 12.2 Response Codes

STATUS_NO_ERROR = 0, // No error
ERROR_FAIL = 1, // General fail
ERROR_PCMD = 2, // Incorrect PCMD
ERROR_PNUM = 3, // Incorrect PNUM or PCMD
ERROR_ADDR = 4, // Incorrect Address
ERROR_DATA_LEN = 5, // Incorrect Data length
ERROR_DATA = 6, // Incorrect Data
ERROR_HWPID = 7, // Incorrect HW Profile ID used
ERROR_NADR = 8, // Incorrect NADR
ERROR_IFACE_CUSTOM_HANDLER = 9, // Data from interface consumed by Custom DPA Handler
ERROR_MISSING_CUSTOM_DPA_HANDLER = 10, // Custom DPA Handler is missing

ERROR_USER_FROM = 0x20, // Beginning of the user code error interval
ERROR_USER_TO = 0x3F, // End of the user error code interval
STATUS_RESERVED_FLAG = 0x40, // Bit/flag reserved for a future use
STATUS_ASYNC_RESPONSE = 0x80, // Bit to flag asynchronous DPA Response from [N]

STATUS_CONFIRMATION = 0xFF // Error code used to mark DPA Confirmation

 12.3 DPA Commands

#define CMD_COORDINATOR_ADDR_INFO 0
#define CMD_COORDINATOR_DISCOVERED_DEVICES 1
#define CMD_COORDINATOR_BONDED_DEVICES 2
#define CMD_COORDINATOR_CLEAR_ALL_BONDS 3
#define CMD_COORDINATOR_BOND_NODE 4
#define CMD_COORDINATOR_REMOVE_BOND 5
#define CMD_COORDINATOR_DISCOVERY 7
#define CMD_COORDINATOR_SET_DPAPARAMS 8
#define CMD_COORDINATOR_SET_HOPS 9
#define CMD_COORDINATOR_BACKUP 11
#define CMD_COORDINATOR_RESTORE 12
#define CMD_COORDINATOR_AUTHORIZE_BOND 13
#define CMD_COORDINATOR_SMART_CONNECT 18
#define CMD_COORDINATOR_SET_MID 19

https://doc.iqrf.org/DpaTechGuide/430/examples/DPA.h.html
https://doc.iqrf.org/DpaTechGuide/430/examples/DPAcustomHandler.h.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 116

#define CMD_NODE_READ 0
#define CMD_NODE_REMOVE_BOND 1
#define CMD_NODE_BACKUP 6
#define CMD_NODE_RESTORE 7
#define CMD_NODE_VALIDATE_BONDS 8

#define CMD_OS_READ 0
#define CMD_OS_RESET 1
#define CMD_OS_READ_CFG 2
#define CMD_OS_RFPGM 3
#define CMD_OS_SLEEP 4
#define CMD_OS_BATCH 5
#define CMD_OS_SET_SECURITY 6
#define CMD_OS_INDICATE 7
#define CMD_OS_RESTART 8
#define CMD_OS_WRITE_CFG_BYTE 9
#define CMD_OS_LOAD_CODE 10
#define CMD_OS_SELECTIVE_BATCH 11
#define CMD_OS_TEST_RF_SIGNAL 12
#define CMD_OS_FACTORY_SETTINGS 13
#define CMD_OS_WRITE_CFG 15

#define CMD_RAM_READ 0
#define CMD_RAM_WRITE 1

#define CMD_EEPROM_READ CMD_RAM_READ
#define CMD_EEPROM_WRITE CMD_RAM_WRITE

#define CMD_EEEPROM_XREAD (CMD_RAM_READ + 2)
#define CMD_EEEPROM_XWRITE (CMD_RAM_WRITE + 2)

#define CMD_LED_SET_OFF 0
#define CMD_LED_SET_ON 1
#define CMD_LED_PULSE 3
#define CMD_LED_FLASHING 4

#define CMD_IO_DIRECTION 0
#define CMD_IO_SET 1
#define CMD_IO_GET 2

#define CMD_THERMOMETER_READ 0

#define CMD_UART_OPEN 0
#define CMD_UART_CLOSE 1
#define CMD_UART_WRITE_READ 2
#define CMD_UART_CLEAR_WRITE_READ 3

#define CMD_FRC_SEND 0
#define CMD_FRC_EXTRARESULT 1
#define CMD_FRC_SEND_SELECTIVE 2
#define CMD_FRC_SET_PARAMS 3

#define CMD_GET_PER_INFO 0x3f

 12.4 Peripheral Types

PERIPHERAL_TYPE_DUMMY = 0x00,
PERIPHERAL_TYPE_COORDINATOR = 0x01,
PERIPHERAL_TYPE_NODE = 0x02,
PERIPHERAL_TYPE_OS = 0x03,
PERIPHERAL_TYPE_EEPROM = 0x04,

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 117

PERIPHERAL_TYPE_BLOCK_EEPROM = 0x05,
PERIPHERAL_TYPE_RAM = 0x06,
PERIPHERAL_TYPE_LED = 0x07,
PERIPHERAL_TYPE_SPI = 0x08,
PERIPHERAL_TYPE_IO = 0x09,
PERIPHERAL_TYPE_UART = 0x0a,
PERIPHERAL_TYPE_THERMOMETER = 0x0b,
PERIPHERAL_TYPE_ADC = 0x0c, (*)
PERIPHERAL_TYPE_PWM = 0x0d,
PERIPHERAL_TYPE_FRC = 0x0e,

PERIPHERAL_TYPE_USER_AREA = 0x80

(*) Embedded peripheral of this type is not defined and implemented yet. See example
CustomDpaHandler-UserPeripheral-ADC.c for potential implementation.

 12.5 Custom DPA Handler Events

#define DpaEvent_DpaRequest 0
#define DpaEvent_Interrupt 1
#define DpaEvent_Idle 2
#define DpaEvent_Init 3
#define DpaEvent_Notification 4
#define DpaEvent_AfterRouting 5
#define DpaEvent_BeforeSleep 6
#define DpaEvent_AfterSleep 7
#define DpaEvent_Reset 8
#define DpaEvent_DisableInterrupts 9
#define DpaEvent_FrcValue 10
#define DpaEvent_ReceiveDpaResponse 11
#define DpaEvent_IFaceReceive 12
#define DpaEvent_ReceiveDpaRequest 13
#define DpaEvent_BeforeSendingDpaResponse 14
#define DpaEvent_PeerToPeer 15
#define DpaEvent_UserDpaValue 17
#define DpaEvent_FrcResponseTime 18
#define DpaEvent_BondingButton 19
#define DpaEvent_Indicate 20
#define DpaEvent_VerifyLocalFrc 21
#define DpaEvent_MenuActivated 22
#define DpaEvent_MenuItemSelected 23
#define DpaEvent_MenuItemFinalize 24

 12.6 Extended Peripheral Characteristic

PERIPHERAL_TYPE_EXTENDED_DEFAULT = 0b00,
PERIPHERAL_TYPE_EXTENDED_READ = 0b01,
PERIPHERAL_TYPE_EXTENDED_WRITE = 0b10,
PERIPHERAL_TYPE_EXTENDED_READ_WRITE = PERIPHERAL_TYPE_EXTENDED_READ |
 PERIPHERAL_TYPE_EXTENDED_WRITE

 12.7 HW Profile IDs

HWPID_Default = 0, // No HW Profile specified
HWPID_DoNotCheck = 0xffff // Use this type to override HW Profile ID check

 12.8 Baud rates

DpaBaud_1200 = 0x00,
DpaBaud_2400 = 0x01,
DpaBaud_4800 = 0x02,

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-UserPeripheral-ADC.c.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 118

DpaBaud_9600 = 0x03,
DpaBaud_19200 = 0x04,
DpaBaud_38400 = 0x05,
DpaBaud_57600 = 0x06,
DpaBaud_115200 = 0x07,
DpaBaud_230400 = 0x08

 12.9 User FRC Codes

#define FRC_USER_BIT_FROM 0x40
#define FRC_USER_BIT_TO 0x7F
#define FRC_USER_BYTE_FROM 0xC0
#define FRC_USER_BYTE_TO 0xDF
#define FRC_USER_2BYTE_FROM 0xF0
#define FRC_USER_2BYTE_TO 0xFF
#define FRC_USER_4BYTE_FROM 0xFC
#define FRC_USER_4BYTE_TO 0xFF

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 119

 13 Appendix

 13.1 CRC Calculation

The following examples show the implementation of the 1-Wire CRC used to protect UART Interface
data. Before using the routines do not forget to initialize the CRC accumulator variable to the initial value
0xFF.

 13.1.1 CC5X Compiler

// One Wire CRC
static uns8 OneWireCrc;

// Updates crc at OneWireCrc variable, parameter value is an input data byte
void UpdateOneWireCrc(uns8 value @ W)
{
 OneWireCrc ^= value;
#pragma update_RP 0 /* OFF */
 value = 0;
 if (OneWireCrc.7)
 value ^= 0x8c; // 0x8C is reverse polynomial representation
 if (OneWireCrc.6) // (normal is 0x31)
 value ^= 0x46;
 if (OneWireCrc.5)
 value ^= 0x23;
 if (OneWireCrc.4)
 value ^= 0x9d;
 if (OneWireCrc.3)
 value ^= 0xc2;
 if (OneWireCrc.2)
 value ^= 0x61; // …
 if (OneWireCrc.1) // 1 instruction
 value ^= 0xbc; // 1 instruction
 if (OneWireCrc.0) // 1 instruction
 value ^= 0x5e; // 1 instruction
 OneWireCrc = value; // 1 instruction
#pragma update_RP 1 /* ON */
}

 13.1.2 C#

/// <summary>
/// Computes 1-Wire CRC
/// </summary>
/// <param name="value">Input data byte</param>
/// <param name="crc">Updated CRC</param>
static void UpdateOneWireCrc (byte value, ref byte crc)
{
 for (int bitLoop = 8; bitLoop != 0; --bitLoop, value >>= 1)
 if (((crc ^ value) & 0x01) != 0)
 crc = (byte)((crc >> 1) ^ 0x8C);
 else
 crc >>= 1;
}

 13.1.3 Java

/**
 * Returns new value of CRC.
 * @param crc current value of CRC
 * @param value input data byte
 * @return updated value of CRC
 */

https://www.bknd.com/cc5x/
https://java.com/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 120

static short updateCRC(short crc, short value) {
 for (int bitLoop = 8; bitLoop != 0; --bitLoop, value >>= 1) {
 if (((crc ^ value) & 0x01) != 0) {
 crc = (short)((crc >> 1) ^ 0x8C);
 } else {
 crc >>= 1;
 }
 }
 return crc;
}

 13.1.4 Pascal/Delphi

/// <summary>
/// Computes 1-Wire CRC
/// </summary>
/// <param name="value">Input data byte</param>
/// <param name="crc">Updated CRC</param>
procedure UpdateOneWireCrc (value: byte; var crc: byte);
var
 bitLoop: integer;
begin
 for bitLoop := 8 downto 1 do begin
 if (((crc xor value) and $01) <> 0) then
 crc := (crc shr 1) xor $8C
 else
 crc := crc shr 1;
 value := value shr 1;
 end;
end;

 13.2 One’s Complement Fletcher-16 Checksum Calculation

The following examples show the implementation of one’s complement Fletcher-16 checksum used to
check code uploaded by the LoadCode command.

Please note that the one’s complement adding implementation does not use a well-known “modulo
255” algorithm that requires more code but it makes use of “carry technique” that unlikely does not
avoid one’s complement negative zero value 0xFF.

 13.2.1 CC5X Compiler

// Initialize One’s Complement Fletcher Checksum
uns16 checksum = “initial value”;

...

// Loop through all data bytes, each stored at oneByte

// Update lower checksum byte
checksum.low8 += oneByte;
checksum.low8 += Carry;
// Update higher checksum byte
checksum.high8 += checksum.low8;
checksum.high8 += Carry

 13.2.2 C#

public static UInt16 FletcherChecksum (byte[] bytes)
{
 // Initialize One’s Complement Fletcher Checksum
 UInt16 checkSum = “initial value”;

https://www.bknd.com/cc5x/

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 121

 // Loop through all data bytes, each stored at oneByte
 foreach (byte oneByte in bytes)
 {
 // Update lower checksum byte
 int tempL = checkSum & 0xff;
 tempL += oneByte;
 if ((tempL & 0x100) != 0)
 tempL++;

 // Update higher checksum byte
 int tempH = checkSum >> 8;
 tempH += tempL & 0xff;
 if ((tempH & 0x100) != 0)
 tempH++;

 checkSum = (UInt16)((tempL & 0xff) | (tempH & 0xff) << 8);
 }

 return checkSum;
}

 13.3 Custom DPA Handler Code at .hex File

The following example shows the principles of obtaining the code for Custom DPA Handler to be stored
at external EEPROM and to be later loaded into MCU flash memory and executed.

Below is the piece of output .lst file of the compiled FRC-Minimalistic Custom DPA Handler example.
The code is located from the mandatory starting address 0x3A20 and in this example ends at address
0x3A30.

 ; bit CustomDpaHandler()
 ; {
 ; // Handler presence mark
 ; clrwdt();
3A20 0064 CLRWDT
 ;
 ; // Return 1 if IQRF button is pressed
 ; if (GetDpaEvent() == DpaEvent_FrcValue && _PCMD == FRC_USER_BIT_FROM && buttonPressed)
3A21 0870 MOVF userReg0,W
3A22 3A0A XORLW 0x0A
3A23 1D03 BTFSS 0x03,Zero_
3A24 320A BRA m001
3A25 0025 MOVLB 0x05
3A26 082F MOVF PCMD,W
3A27 3A40 XORLW 0x40
3A28 1D03 BTFSS 0x03,Zero_
3A29 3205 BRA m001
3A2A 0020 MOVLB 0x00
3A2B 1A0D BTFSC PORTB,4
3A2C 3202 BRA m001
 ; responseFRCvalue.1 = 1;
3A2D 002B MOVLB 0x0B
3A2E 14B8 BSF responseFRCvalue,1
 ;
 ; return FALSE;
3A2F 1003 m001 BCF 0x03,Carry
3A30 0008 RETURN
 ; }

The portion of the corresponding .hex file stores the code bytes from the double address 0x7440 = 2 ×
0x3A20 to 0x7460 = 2 × 0x3A30. The first two digits at the line specify the byte count, two zeros after
the address specify the record type.

https://doc.iqrf.org/DpaTechGuide/430/examples/CustomDpaHandler-FRC-Minimalistic.c.html
https://en.wikipedia.org/wiki/Intel_HEX

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 122

:020000040000FA
...
:08741000AC310024BA31080080
:10744000640070080A3A031D0A3225002F08403AEA
:10745000031D053220000D1A02322B00B814031050
:02746000080022
:027AFE0008007E
...

The exact code size is 2 × (0x3A30 - 0x3A20 + 1) = 34 bytes. The length of the code stored at external
EEPROM must be multiple of 64 so, in our example, the stored size is 64 = 0x40 bytes. If the unused
30 bytes (64 - 34) bytes of the 64-byte block are filled in with zeros then the Fletcher-16 checksum
equals 0xEA3A.

 13.4 IQRF OS Change

[sync] IQRF OS version at any DPA device can be upgraded (or downgraded) over the network without
having physical access to the device. It can also optionally change the DPA version at the same time.
A specially prepared Custom DPA Handler named CustomDpaHandler-ChangeIQRFOS.iqrf must be
used. The handler can be found at the IQRF Startup Package. Upload the handler to the device using
the LoadCode command. Before that store an IQRF OS change file (e.g. ChangeOS-TR7x-308(0873)-
308(0874).bin) at the external EEPROM using a series of Extended Write commands. The file can be
found at the IQRF Startup Package too. Then execute a below-described DPA Request at the custom
peripheral implemented at the special uploaded handler. After the IQRF OS change is successfully
finished the device is reset and you can upload your previously used handler back again using the
LoadCode command.

Important: During the whole process of the IQRF OS change (starting at the time of sending the below-
described request) do not interrupt the power supply of the module and do not reset the module
otherwise it would interrupt the process and irreversible damage the module. Make sure all batteries
and accumulators powering modules are fully charged before the IQRF OS change is initiated.

Request

Please note that for security reasons the request requires explicitly specifying HWPID of the special
IQRF OS Change handler equal 0xC05E. The request will not be executed if HWPID equals 0xFFFF.

The actual IQRF OS change process after the response is received takes several seconds. During the
process, the red LED is on. At the end of the process, the device is reset and the red LED goes off.

NADR PNUM PCMD HWPID 0 1 … 2

NADR 0x20 0x00 0xC05E Flags Address

Flags bit 0 Action:

0 Checks all required conditions without performing IQRF OS change.
1 Same as above plus performs IQRF OS change.

bits 1-7 Reserved, must equal 0.
Address A physical address of the external EEPROM memory block containing the IQRF OS

change file.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x20 0x80 0xC05E 0 ? Result

Result:

0 All the required conditions are met. IQRF OS change will be performed if Flags.0=1 was
specified at the request.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 123

3 Old IQRF OS is not present (old checksum does not match) at the module. IQRF OS
change is not possible.

4 The content of the IQRF OS change file stored in the external EEPROM is not valid.
IQRF OS change is not possible.

7 IQRF OS change file stored in the external EEPROM has an unsupported version. IQRF
OS change is not possible.

 13.4.1 IQRF OS Change File

The IQRF OS change file content should be inspected before the file is stored in external EEPROM to
find out the versions of IQRF OSs (and optionally DPA) it changes between and to check the file
consistency.

File format

0 … 1 2 … 3 4 5 6 7 … 8 9 … 10 11 … 13 14 … 16 17 … Length + 3

Checksum Length Version OsVerTo OsVerFrom OsBuildTo OsBuildFrom DPAto DPAfrom Undocumented

Checksum Fletcher-16 Checksum of the file content starting from the 3rd field Version. The initial

checksum value is 0x0000.
Length Length of the file content starting from the 3rd field Version, so the total file length is Length

+ 4.
Version bit 0-6 File version. Only the values of 0x01 (TR-7xD) and 0x02 (TR-7xG) are

supported.
bit 7 Undocumented

OsVerTo IQRF OS version the file changes to. See moduleInfo IQRF OS function for more details.
OsVerFrom IQRF OS version the file changes from. See moduleInfo IQRF OS function for more

details.
OsBuildTo IQRF OS build number the file changes from. See moduleInfo IQRF OS function for more

details.
OsBuildFrom IQRF OS build number the file changes from. See moduleInfo IQRF OS function for more

details.
DPAto 3 bytes specifying DPA version to optionally change to.
 The first 2 bytes contain the DPA version in the same BCD format the enumeration uses.
 3rd byte contains the following flags/bits:
 0: DPA implements [C].
 1: DPA implements [N].
 2: 0=supports both STD and STD+LP networks, 1=supports STD+LP network.
 3: SPI interface
 4: UART interface
 5-7: unused

 Note: all 3 bytes are zero when DPA is not updated by the change file.
DPAfrom The DPA version to change from. Same format as DPAto.

https://doc.iqrf.org/IQRF-OS-Reference-guide/index.html?page=moduleinfo.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 124

 13.5 Code Optimization

If the implemented algorithm is already optimal enough and there is still a need to optimize the code in
terms of minimizing code size, increasing execution speed, or minimizing memory footprint, an
optimization technique could be used. The following chapters describe a few of them. Some techniques
are general and some of them are very specific for the CC5X compiler, IQRF ecosystem, or the
MICROCHIP PIC MCU. Some techniques are straightforward, some more complex. It is advisable to
consult the generated code at the output .lst file in any case.

 13.5.1 W as a temporary variable

FLASH- RAM Speed

When the content of the W register is preserved, it can be used as a temporary variable.

if (byte & mask)
 bufferCOM[0] = 0xAB;
else
 bufferCOM[0] = 0xCD;

if (byte & mask)
 W = 0xAB;
else
 W = 0xCD;
bufferCOM[0] = W;

 13.5.2 Variable access reorder

FLASH- RAM Speed+

Try to group access to the variables from the same bank to avoid excess MOVLB instructions. By the
way, C compilers by definition are free to reorder statements to optimize generated code.

uns8 savedTX;
...
RTHOPS = 0xFF; // @bank5 !=
TX = savedTX; // @bank11 != @bank5 ==
RTDEF = 2; // @bank5

uns8 savedTX;
...
TX = savedTX; // @bank11 != @bank5 ==
RTHOPS = 0xFF; // @bank5 ==
RTDEF = 2; // @bank5

 13.5.3 Variable access decomposition

FLASH- RAM Speed+

CC5X is not able to reorder hidden access to the bytes the wider variables consist of so it generates
excess MOVLB instructions.

bank11 uns16 v11;
bank12 uns16 v12;

if (v11 == v12)
 nop();

bank11 uns16 v11;
bank12 uns16 v12;

if (v11.low8 == v12.low8 && v12.high8 ==
v11.high8)
 nop();

 13.5.4 Explicit MOVLB omitting

FLASH- RAM Speed+

Under certain circumstances and CC5X settings (-bu command line option) the CC5X generates excess
MOVLB instructions. Using #pragma updateBank MOVLB can be suppressed. It is recommended to

study .lst files.

if (byte > 0x04)
 byte = 0;
byte *= 2;

if (byte > 0x04)
 byte = 0;
#pragma updateBank 0
byte *= 2;
#pragma updateBank 1

 13.5.5 Direct function parameter usage

FLASH- RAM- Speed+

https://en.wikipedia.org/wiki/Memory_barrier#Out-of-order_execution_versus_compiler_reordering_optimizations

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 125

It is advisable to use a variable that maps exactly the fixed-function parameter (when available or when
intentionally implemented to save RAM) at a function call to avoid useless data moves between the
variable and the respective parameters. For instance, startLongDelay maps a parameter ticks to the

param3 system variable.

uns16 delay;
delay = (uns16)RTDT0 * RTDT1;
startLongDelay(delay);

uns16 delay @ param3;
delay = (uns16)RTDT0 * RTDT1;
startLongDelay(delay);

 13.5.6 Avoiding else

FLASH- RAM Speed-

By avoiding else branch it is possible to avoid skipping out of the if branch. This “else before if move” is
possible only when it does not bring any unwanted side effects and when the slower execution does not
matter. It is also better when the original else branch code is a faster one and the if branch code is less
frequent.

if (checkValue(value))
 byte |= mask;
else
 byte &= ~mask;

byte |= mask;
if (!checkValue(value))
 byte &= ~mask;

bufferCOM[0] = 0xCD;
if (value.1)
 bufferCOM[0] = 0xAB;

W = 0xCD;
if (value.1)
 W = 0xAB;

bufferCOM[0] = W;

 13.5.7 Switch instead of if

FLASH- RAM Speed+

CC5X generates more efficient code in the case of the switch when an expression value is compared
to the more than usually 2 constant values.

if (byte == 1 || byte == 3)
 _LEDR = 1;
else if (byte == 7 || byte == 13)
 _LEDR = 0;

switch(byte)
{
case 1:
case 3:
 _LEDG = 1;
 break;

case 7:
case 13:
 _LEDG = 0;
 break;
}

 13.5.8 Function call before return

FLASH- RAM Speed+

If the very last function statement is another function (from the same page) call, then CC5X uses
efficiently goto instead of call+return. It is faster, shorter, and consumes less MCU stack.

void Method ()
{
 disableSPI();
 variable = 0;
}

void Method ()
{
 variable = 0;
 disableSPI();
}

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 126

void Method ()
{
 if (enable)
 enableSPI();
 else
 disableSPI();
}

void Method ()
{
 if (enable)
 {
 enableSPI();
 // return forces CC5X to emit BRA/GOTO
before // else instead of CALL
 return;
 }
 else
 disableSPI();
}

 13.5.9 Using goto to avoid redundant code

FLASH- RAM Speed-

CC5X is not able to detect and merge the same tailing code from more blocks that terminate at the same
point. goto statement will help.

switch (byte)
{
default:
 return TRUE;

case 0:
 variable = 0xbb;
 err = TRUE;
 disableSPI();
 return FALSE;

case 1:
 variable = 0xaa;
 err = TRUE;
 disableSPI();
 return FALSE;
}

switch (byte)
{
default:
 return TRUE;

case 0:
 variable = 0xbb;
 goto LABEL;

case 1:
 variable = 0xaa;
LABEL:
 err = TRUE;
 disableSPI();
 return FALSE;
}

 13.5.10 Avoiding readFromRAM and getINDFx

FLASH- RAM Speed+

IQRF OS allows to use *FSR0, *FSR1, INDF0, INDF1 for memory read purposes instead of inefficient
and obsolete readFromRAM() and getINDFx() calls.

byte = readFromRAM(&mask); FSR0 = (uns16)&mask;

byte = *FSR0;

 13.5.11 Advanced C-compiler optimized instructions

FLASH- RAM Speed+

It is efficient to use C-compiler optimized instruction, e.g. MOVIW.

byte = INDF0; // = *FSR0
FSR0++;
mask = INDF0; // = *FSR0
FSR0 -= 5;
var = INDF0; // = *FSR0

byte = *FSR0++;
mask = INDF0; // or = *FSR0
var = FSR0[-5];

 13.5.12 do {} while () is preferred

FLASH- RAM Speed+

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 127

If possible do {} while () should be used instead of while(){} or for(;;) {} because a jump from the end of
the loop is not needed and the condition is evaluated one less time.

uns8 loop = 12;
while (loop != 0)
{
 // use loop
 loop -= 3;
}

uns8 loop = 12;
do
{
 // use loop
 loop -= 3;
}
while (loop != 0);

 13.5.13 Use DECFSZ/INCFSZ

FLASH- RAM Speed+

Loop do {} while () with a condition --var != 0 or ++var != 0 leads to the efficient compilation using
DECFSZ respectively INCFSZ instructions.

uns8 loop = 0;
do
{
 // execute loop body
}
while (++loop != 10);

uns8 loop = 10;
do
{
 // execute loop body
}
while (--loop != 0);

 13.5.14 Widening function parameter

FLASH- RAM- Speed+

Sometimes it is necessary to extend the function parameter size.

void Method (uns8 value)
{
 uns16 var16;
 var16.high8 = 0;
 var16.low8 = value;

 var16 *= 3;
 // use var16
}

uns16 var16;

void Method (uns8 value @ var16)
{
 var16.high8 = 0;

 var16 *= 3;
 // use var16
}

 13.5.15 Carry as a variable

FLASH- RAM- Speed+

Sometimes the Carry MCU flag can be carefully and efficiently used as a variable.

Also, the following example shows how to compare and store the last value in one step.

// Keeps Carry, changes Zero_
#define XorWithAndCopyTo(value,xorWithAndCopyTo) do { \
 W = value; \
 xorWithAndCopyTo ^= W; \
 xorWithAndCopyTo = W; } while(0)

// Compare and copy the last values of PID, TX, and PCMD to detect duplicate packets
Carry = FALSE;

XorWithAndCopyTo(PID, lastPID);
if (!Zero_)
 Carry = TRUE;

XorWithAndCopyTo(TX, lastTX);
if (!Zero_)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 128

 Carry = TRUE;

XorWithAndCopyTo(_PCMD, lastPCMD);
if (!Zero_)
 Carry = TRUE;

// At least one of 3 parameters must be different to use the packet
if (!Carry)
...

 13.5.16 Limiting variable scope

FLASH RAM- Speed

CC5X is not able to detect a minimal variable scope and therefore to effectively share RAM location
between the variables. The latest possible variable declaration plus artificial code blocks will help to
save some RAM.

uns8 temperature;
uns16 capture;

temperature = getTemperature();
bufferCOM[0] = temperature;

captureTicks();
capture = param3;
bufferCOM[1] = capture.low8;
bufferCOM[2] = capture.high8;

{
 uns8 temperature = getTemperature();
 bufferCOM[0] = temperature;
}

{
 captureTicks();
 uns16 capture = param3;
 bufferCOM[1] = capture.low8;
 bufferCOM[2] = capture.high8;
}

 13.5.17 Using IQRF variables

FLASH- RAM- Speed+

When there is no risk of memory conflict then IQRF OS variables and function parameters can be used
to save RAM and to avoid MOVLBs as these variables reside at the share core RAM area. Such
variables can be used when no IQRF functions are not called.

uns16 Squared (uns8 value)
{
 uns8 tempValue = value;
 uns16 squared = (uns16)value *
tempValue;
 return squared;
}

uns16 Squared (uns8 value @ param2)
{
 uns8 tempValue @ param3;
 tempValue = value;
 uns16 squared @ param4;
 squared = (uns16)value * tempValue;
 return squared;
}

param2, param3, param4 can be used with caution. It is much safer to use user dedicated userReg0

and userReg1.

 13.5.18 Parameter mapped to W

FLASH- RAM- Speed+

When the content of the W register is not modified then the very last function parameter can be mapped
to it.

void Method (uns8 value)
{
 switch (value)
 {
 case 1:
 case 2:
 _LEDG = 1;

void Method (uns8 value @ W)
{
 switch (value)
 {
 case 1:
 case 2:
 _LEDG = 1;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 129

 break;

 case 4:
 case 8:
 _LEDG = 0;
 break;
 }
}

 break;

 case 4:
 case 8:
 _LEDG = 0;
 break;
 }
}

 13.5.19 Pointer parameters mapped to FSRx

FLASH- RAM- Speed+

When a function pointer parameter is later used as FSRx, then it is better to directly map this parameter
to FSRx.

void ZeroMemory (uns16 from, uns8 length)
{
 FSR0 = from;
 do
 {
 setINDF0(0);
 FSR0++;
 }
 while (--length != 0);
}

void ZeroMemory (uns16 from@FSR0, uns8
length)
{
 do
 {
 setINDF0(0);
 FSR0++;
 }
 while (-- length != 0);
}

 13.5.20 FSRx as a 16-bit variable

FLASH- RAM- Speed+

When FSRx content is preserved then it can be used as a general 16-bit variable to save RAM and
avoid MOVLBs. Also because of ADDFSR instruction adding/subtracting small constant numbers is very
efficient.
.
uns16 loop16 = 1000;
uns8 var8;
do
{
 var8 = getTemperature();
 // use loop16 and var8
 loop16 -= 5;
} while (loop16 != 0);

FSR0 = 1000;
uns8 var8 @ FSR1L;
do
{
 var8 = getTemperature();
 // use FSR0 and var8
 FSR0 -= 5;
} while (FSR0 != 0);

 13.5.21 Using FSRx to copy between buffers and variables

FLASH- RAM- Speed+

It is efficient to use FSRx to repeatedly access (copy, compare) the content of buffers and variables to
avoid MOVLBs.

 RX = bufferRF[0];
 RTDT3 = bufferRF[10];
 var0 = bufferRF[20];
 var1 = bufferRF[30];

 FSR0 = bufferRF;
 // or even better (shorter, but not faster)
 setFSR0(_FSR_RF);

 RX = FSR0[0];
 RTDT3 = FSR0[10];
 var0 = FSR0[20];
 var1 = FSR0[30];

 13.5.22 Accessing 16-bit MCU registers

FLASH RAM Speed

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 130

The undocumented CC5X (parenthesis) trick can be used to map to the byte pair of the 16-bit MCU
variable without warning.

 CCPR2L = 0x34;
 CCPR2H = 0x12;

 uns16 CCPR2 @ (&CCPR2L);
 CCPR2 = 0x1234;

 13.5.23 Using IQRF OS offset and limit variables

FLASH- RAM Speed

There are predefined IQRF OS variables that can optimize various copy functions.

copyMemoryBlock(bufferRF + 5, bufferINFO + 2,
3);

memoryOffsetFrom = 5;
memoryOffsetTo = 2;
memoryLimit = 3;
copyBufferRF2INFO();

 13.5.24 Effective is not always efficient

FLASH- RAM Speed+

Observe the output .lst file when it makes sense.

counter += value > maxValue; if (value > maxValue)

 counter++;

 13.5.25 The assignment also has a value

FLASH- RAM Speed+

This can eliminate extra assignment statements.

copyMemoryBlock(bufferAUX, bufferRF,
5);
DLEN = 5;
RFTXpacket();

copyMemoryBlock(bufferAUX,bufferRF,DLEN=5);
RFTXpacket();

 13.5.26 Interval detection optimization

FLASH- RAM- Speed+

uns8 GetRfRxFilter (uns8 rxFilter)
{
 if (rxFilter < 20)
 return _FLT_5;

 if (rxFilter < 35)
 return _FLT_20;

 if (rxFilter < 50)
 return _FLT_35;
 else
 return _FLT_50;
}

uns8 GetRfRxFilter (uns8 rxFilter @ W)
{
 W -= 20;
 if (!Carry)
 return _FLT_5;
 W -= 35 - 20;
 if (!Carry)
 return _FLT_20;
 W -= 50 - 35;
 if (!Carry)
 return _FLT_35;
 else
 return _FLT_50;
}

 13.5.27 Optimized constants

FLASH- RAM Speed+

It is advisable to use constants, which generate smaller code. In the following example, the lower byte
of the constant is 0, therefore a more efficient code is generated but the side effect is minimal.

#define DELAY 1000
startLongDelay(DELAY);

#define DELAY 1024
startLongDelay(DELAY);

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 131

 13.5.28 Equality result

FLASH- RAM Speed+

When a function result is equality of two expressions, then instead of converting the comparison result
to the Carry (used to return bit result) it is better to return the difference and to use the Zero_ MCU
flag. Carry flag can be even used for smaller/bigger comparisons too.

uns8 var1, var2;

bit AreSame ()
{
 return var1 == var2;
}

void APPLICATION (void)
{
 if (AreSame())
 ...
 else if (var2 > var1)
 ...

}

uns8 var1, var2;

uns8 AreSame ()
{
 return var1 - var2;
}

void APPLICATION (void)
{
 AreSame();
 if (Zero_)
 ...
 else if (!Carry)
 ...
}

 13.5.29 One instruction at the if branch

FLASH- RAM Speed+

If the whole if branch is just one instruction long, then a goto instruction can be avoided.

RandomValue = lsr(RandomValue);
if (Carry)
 RandomValue ^= 0b10111000;

RandomValue = lsr(RandomValue);
W = 0b10111000;
if (Carry)
 RandomValue ^= W; // 1 instruction

if (OERR)
{
 CREN = 0;
 CREN = 1;
}

if (OERR)
 CREN = 0;

CREN = 1;

 13.5.30 Utilization of the preloaded W

FLASH- RAM Speed+

CC5X is not able to optimize commutative expressions to use the already preloaded variable or W
register.

uns8 var1, var2;

var1 = 1;
if (var1.0)
{
 if (var2 == var1)
 nop();
}
else
 nop();

uns8 var1, var2;

var1 = 1;
if (var1.0)
{
 if (var1 == var2)
 nop();
}
else
 nop();

 13.5.31 == 1 is more efficient than != 1

FLASH- RAM Speed+

A test == 1 is more efficient (DECFSZ) than a test != 1.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 132

if (var1 != 1)
 nop2();
else
 nop();

if (var1 == 1)
 nop();
else
 nop2();

 13.5.32 == 0xFF is more efficient than != 0xFF

FLASH- RAM Speed+

A test == 0xFF is more efficient (INCFSZ) than a test != 0xFF.

if (var1 != 0xFF)
 nop2();
else
 nop();

if (var1 == 0xFF)
 nop();
else
 nop2();

 13.5.33 Expression modification

FLASH- RAM Speed+

Simplifying algebraic expressions can help the CC5X compiler to produce more efficient code.

uns8 a, b;

if (a > (16 - b))
 nop();

uns8 a, b;

if (a + b > 16)
 nop();

 13.5.34 Computed goto with a table limit

FLASH- RAM- Speed+

void Table (uns8 index @ W)
{
#define MAX 2

 // Is index @ W > MAX?
 index = MAX - index;
 if (!Carry)
 return; // Above table limit

 skip(index); // Reverse order because of previous subtraction
#pragma computedGoto 1
 goto _label2; // or e.g. return 0xEF
 goto _label1; // or e.g. return 0xCD
 goto _label0; // or e.g. return 0xAB
#pragma computedGoto 0

label0: // If the last used label is the 1st one then one goto instruction is
avoided
...

 13.5.35 Default is first at switch

FLASH- RAM Speed+

If there is a default used inside the switch then it should be the first “case“to avoid internal “goto
default” instruction. It might in some cases produce shorter and faster code.

switch (DLEN)
{
 case 12:
 return 21;

switch (DLEN)
{
 default:
 return 0;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 133

 case 34:
 return 43;

 default:
 return 0;
}

 case 12:
 return 21;

 case 34:
 return 43;
}

 13.5.36 Better to return from than after the loop

FLASH- RAM Speed+

It is more efficient to return from the function in the middle of the loop than to exit the loop then return
so internal “goto to the return” can be avoided.

void function ()
{
 uns8 loop;
 for (loop = 10; --loop != 0;)
 {
 nop2();
 nop2();
 }
}

void function ()
{
 uns8 loop;
 for (loop = 10;;)
 {
 if (--loop == 0)
 return;

 nop2();
 nop2();
 }
}

The same applies to the return from the function itself.

void Function()
{
 if (condition1)
 {
 nop();
 if (condition2)
 {
 nop();
 }
 }
}

void Function()
{
 if (!condition1)
 return;

 nop();

 if (!condition2)
 return;

 nop();
}

 13.5.37 Modification instead of storing the value

FLASH- RAM Speed+

In special cases, it is better to modify the value of the variable than to assign it as the compiler optimizes
to the shorter code. The compiler just increments the value in the example below.

#define STATE_A 0
#define STATE_B 1
#define STATE_C 2

 uns8 state;
 if (condition1)
 state = STATE_A;
 else
 if (condition2)
 state = STATE_B;
 else
 state = STATE_C;

#define STATE_A 0
#define STATE_B 1
#define STATE_C 2

 uns8 state = STATE_A;
 if (!condition1)
 {
 state += STATE_B - STATE_A; // ++
 if (condition2)
 state += STATE_C - STATE_B; // ++
 }

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 134

 13.5.38 Assignment compares to 0

FLASH- RAM Speed+

Copying among variables often compares them to zero too (because of MOVF instruction).

uns8 variable = *FSR0++;
if (variable == 0)
 ...

uns8 variable = *FSR0++;
if (Zero_)
 ...

 13.5.39 End condition of the 16-bit loop variable

FLASH- RAM Speed+

Sometimes this can be optimized.

uns16 var16 = 12345;
do
{
 var16--;
} while (var16 != -1);

uns16 var16 = 12345;
do
{
 var16--;
} while (var16.high8 != -1);
// or
FSR1 = 12345;
do
{
 FSR1--; // efficient
} while (FSR1H != -1);

 13.5.40 Shift for a smart comparison

FLASH- RAM Speed+

A comparison of small numbers can be optimized by a shift.

uns8 upCount;

if (upCount > 1)
// or
if (upCount >= 2)

uns8 upCount;

W = upCount >> 1;
if (W != 0)

 13.5.41 Optimized return TRUE/FALSE

FLASH- RAM Speed-

Each return TRUE or return FALSE requires two instructions. If there are more such statements it is

more efficient to implement a function to just return TRUE or FALSE and to return their value. This leads
just to one goto instruction.

bit MyFunction()
{
 // Do something
 if (condition)
 return FALSE;
 // Do something
 return TRUE;
}

bit returnTRUE()
{
 return TRUE;
}

bit returnFALSE()
{
 return FALSE;
}

bit MyFunction()
{
 // Do something
 if (condition)
 return returnFALSE();
 // Do something

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 135

 return returnTRUE();
}

 13.5.42 Avoiding MOVLP #1

FLASH- RAM Speed+

Try to group, if possible, calls of functions from the same Flash page.

copyBufferRF2INFO();
callingAnotherPageFunction();
eeeWriteData(0);

copyBufferRF2INFO();
eeeWriteData(0);
callingAnotherPageFunction();

 13.5.43 Avoiding MOVLP #2

FLASH- RAM Speed-

If there are repeated calls of some function residing on another page, then create a function at the
current page that calls this function.

#pragma origin __EXTENDED_FLASH

...
 pulseLEDG();
 // Do something
 pulseLEDG();
 // Do something
 pulseLEDG();
 // Do something
 pulseLEDG();

#pragma origin __EXTENDED_FLASH

 void pulseLEDGfromExtendedFlash()
 {
 pulseLEDG();
 }

...
 pulseLEDGfromExtendedFlash();
 // Do something
 pulseLEDGfromExtendedFlash();
 // Do something
 pulseLEDGfromExtendedFlash();
 // Do something
 pulseLEDGfromExtendedFlash();

 13.5.44 Setting zeroed variables

FLASH- RAM Speed+

When it is for sure the variable is already zero the new value can be ORed in and it might lead to the
more efficient code (setting just one bit).

memoryLimit = 64;
eeeWriteData(0);

// memoryLimit is zero so the next statement takes 1 instruction
memoryLimit |= 64;
eeeWriteData(0);

 13.5.45 Compare to zero is more efficient

FLASH- RAM Speed+

Comparing to a constant zero value is more efficient than to the other constant numbers. The “~”
operator takes one instruction as well as moving variable value to the working W register in the less
efficient code.

if ((address & 7) == 7) if ((~address & 7) == 0)

 13.5.46 setFSR01

FLASH- RAM Speed-

Registers FSR0 and/or FSR1 can be efficiently set to the common buffer addresses by calling IQRF OS
setFSRxy function. Calling this function takes 2 instructions only. Setting both or one of the FSR
registers normally takes 8 or 4 instructions respectively.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 136

FSR0 = &bufferCOM[0];
FSR1 = &bufferINFO[0];

setFSR01(_FSR_COM, _FSR_INFO);

 13.5.47 Pointer arithmetic

FLASH- RAM Speed+

When a variable in RAM is traditionally addressed, the variable content could not lie in more than one
PIC RAM bank. Therefore, when a pointer value to a variable is calculated the higher byte of the pointer
is never changed and the calculation can be done only on the lower byte.

 uns8 indexAtBufferINFO;
...
 setFSR0(_FSR_INFO);
 FSR0 += indexAtBufferINFO;

 uns8 indexAtBufferINFO;
...
 setFSR0(_FSR_INFO);
 FSR0L += indexAtBufferINFO;

Note: The above code might not work when Linear data memory (0x2---) or Program memory
(0x8---- … 0xFFFF) is indirectly addressed. It always works with the Traditional data addressing (0x0---)
only.

Please note that when a constant value (from -32 to +31) is added to an FRSx register, then the
calculation should be always done with the whole register as the optimal PIC ADDFSR instruction is
generated.

 setFSR0(_FSR_INFO);
 FSR0 += 12;

 13.5.48 Circular buffer index increment

FLASH- RAM Speed+

When for instance a circular buffer index is incremented and the buffer length is a power of two the
buffer index can be incremented a better way.

index = (index + 1) %
BUFFER_LENGTH;

#if 0 != (BUFFER_LENGTH & (BUFFER_LENGTH - 1))
#error BUFFER_LENGTH is not power of 2
#endif

index++;
index &= ~BUFFER_LENGTH;

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 137

 14 DPA Release Notes
Detailed release notes for each DPA version can be found in the following chapters.

 14.1 DPA 4.30

IQRF OS: 4.06D-08D8/4.06G-090D (TR-7xD/TR-7xG)

Changes and enhancements

• Event BondingButton was discarded at TR-7xG transceivers.

New features

• DPA Menu at TR-7xG transceivers.

• New events MenuActivated, MenuItemSelected, and MenuItemFinalize at TR-7xG transceivers.

• New API functions DpaApiMenu, DpaApiMenuIndicateResult, and DpaApiMenuExecuteat TR-7xG
transceivers.

 14.2 DPA 4.18

IQRF OS: 4.06D-08D8/4.06G-090D (TR-7xD/TR-7xG)

Bug Fixes

• Fixed an issue when UART Interface did not work at TR-7xG.

 14.3 DPA 4.17

IQRF OS: 4.06D-08D8/4.06G-090D (TR-7xD/TR-7xG)

Changes and enhancements

• IO Peripheral was discarded at [C] devices.

• IO Setup was discarded at [C] devices.

• Reduced stack usage by one level in the event Idle.

• Reduced stack usage by one level when calling DpaApiLocalFrc.

• One extra stack level was reduced with the new DpaApiLocalFrc_StackSaver macro compared to
the standard DpaApiLocalFrc call.

• Bit Flags.0 at Read response now signalizes an insufficient IQRF OS version but not IQRF OS build.

• InitPHY described at Read TR Configuration.

• Brown-Out Reset (BOR) is enabled when DPA starts at TR-7xD transceivers.

• Brown-Out Reset (BOR) is disabled when entering and re-enabled when exiting Sleep and
DpaApiSleep at TR-7xD transceivers.

New features

• Support of IQRF OS 4.05G i.e., TR-7xG transceivers.

• LoadCode can upload IQRF OS change .bin file at TR-7xG transceivers, thus special
CustomDpaHandler-ChangeIQRFOS handler is not needed anymore.

• OTK bonding available at Bond Node command.

• New API function DpaApiRandom.

Bug Fixes

• Fixed an issue when returned FRC values for 2B and 4B Local FRCs were incorrect.

• Fixed an issue where when [N] bonded to a non-preconfigured network channel (factory default
52) without restarting [N], calling DpaApiSetRfDefaults would cause the originally configured
channel to be set, causing [N] to stop communicating. DpaApiSetRfDefaults can be called
explicitly in the Custom DPA Handler, internally called in the DPA when the Spirit1 RF chip is
locked, or called at the end of a DP2P session.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 138

 14.4 DPA 4.16

IQRF OS: 4.04D-08D5 (TR-7xD), 4.05D-08D7 (TR-7xD)

Changes and enhancements

• Command OS Read indicates whether the FRC Aggregation feature is enabled.

• Former DpaApiLocalFrc bug fix workaround (DPA 4.15) is not needed anymore.

• The structure of Smart Connect request parameters was changed. See also the bug fixes section
below.

• Default SmartConnect bonding is executed with a stricter RF RX filter by value +4.

New features

• New API function DpaApiAggregateFrc for the FRC aggregation.

• New API function DpaApiSetOTK for the OTK prebonding.

• New API functions DpaApiSleep and DpaApiAfterSleep.

• New DPA API variable FirstDpaApiSleep.

• New API functions DpaApiI2Cinit, DpaApiI2Cstart, DpaApiI2Cwrite, DpaApiI2Cread,
DpaApiI2Cstop, DpaApiI2CwaitForACK, DpaApiI2Cshutdown, and DpaApiI2CwaitForIdle for I2C
bus communication. Wrapper functions are available to decrease the code size when the original
API function is called more than once.

• New DPA API variables I2Ctimeout and I2CwasTimeout for I2C bus communication.

• New Custom DPA Handler templates targeted at [C] and [N] devices.

• New DPA API variable DpaValue.

Bug Fixes

• Fixed an issue when UserData parameter at Smart Connect was not passed into

hostUserDataReceived IQRF OS variable in the bonded [N]. The workaround for the previous

DPA versions is to store 4B UserData data into former parameters
VirtualDeviceAddress+reserver[0…2].

• Fixed an issue when DpaApiRfTxDpaPacketCoordinator did not transmit the network packet at the
AfterRouting event handler when IQRF OS coordinator mode was not restored after executing
certain non-networking commands (e.g. bonding). The workaround is to call setCoordinatorMode
before calling DpaApiRfTxDpaPacketCoordinator.

• Fixed an issue when a 4-byte longer packet length was returned at ReceiveDpaRequest for
non-routed (!_ROUTEF) packets.

• Fixed an issue when commands Smart Connect and Set MID worked with PNUM of any available
embedded peripheral when Coordinator peripheral is available.

 14.5 DPA 4.15

IQRF OS: 4.04D-08D5 (TR-7xD)

Changes and enhancements

• SPI (Slave) peripheral was discarded.

• SPI Interface at [N] was discarded.

• Autoexec was discarded.

• The parameter of the Set FRC Params command was extended.

New features

• New API function DpaApiLocalFrc for the execution of the local FRC.

• New event VerifyLocalFrc to verify a received local FRC command.

• New API function DpaApiCrc8 to compute DPA UART Interface compatible CRC.

• New API variable NonroutedRfTxDpaPacket to force TX of a non-routed packet.

Bug Fixes

• Please note a bug fix workaround in DpaApiLocalFrc.

https://doc.iqrf.org/IQRF-OS-Reference-guide/pages/setcoordinatormode.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 139

 14.6 DPA 4.14

IQRF OS: 4.03D-08C8 (TR-7xD)

Changes and enhancements

• Command Authorize bond can now authorize up to 11 [Ns].

• Smart Connect now directly supports prebonding to the overlapping networks.

New features

• New embedded FRC command Prebonded memory compare.

 14.7 DPA 4.13

IQRF OS: 4.03D-08C8 (TR-7xD)

Changes and enhancements

• Command Remove bonded Node also removes the [N] from the list of the discovered [Ns].

New features

• New command Indicate for device indication.

• New event Indicate for custom device indication.

• New API variable AsyncReqAtCoordinator.

Bug Fixes

• Fixed an issue when under certain circumstances the internal call of bondNewNode inside Bond
Node fails to bond. The workarounds for the previous DPA versions are:

1. Restart the [C] immediately before Bond Node.
2. Use the Custom DPA Handler CustomDpaHandler-BondNewNode-Workaround uploaded and

enabled at [C] to reset RTHOPS before bondNewNode is called. The handler is available at
https://www.iqrf.org/dpa.

 14.8 DPA 4.12

IQRF OS: 4.03D-08C8 (TR-7xD)

Changes and enhancements

• Command OS Read indicates whether IQRF OS is changed from the originally manufactured
version.

Bug Fixes

• Fixed an issue introduced with DPA 3.03 when RF filter, RF power, and RF channel values were
continuously set (but not only at startup) according to the actual values at TR Configuration.

 14.9 DPA 4.11

IQRF OS: 4.03D-08C8 (TR-7xD)

Changes and enhancements

• When UART Peripheral is enabled at the [N] configuration then the UART is automatically opened
shortly before the Init event is raised so the Autoexec is not needed anymore for opening the UART.
The UART baud rate is also set in the configuration.

• Restore command does not restore physical settings (e.g. RF band, thermometer sensor presence)
of the backed-up transceiver. The settings are now maintained.

Bug Fixes

• Fixed an issue introduced at DPA V4.10 when "Routing off" is enabled at the Configuration and
later disabled, then IQRF MESH routing is not working anyway. The workaround for DPA V4.10
was to call setRoutingOn() at the Init event.

https://www.iqrf.org/dpa

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 140

 14.10 DPA 4.10

IQRF OS: 4.03D-08C8 (TR-7xD)

Changes and enhancements

• Command OS Read was extended.

• Discarded embedded FRC command UART or SPI data available (FRC_UART_SPI_data).

• Discarded diagnostic routing LED indication from Set DPA Param.

• Discarded 200 ms long diagnostics timeslot from Set DPA Param.

New features

• New command Factory Settings.

• Factory settings can be applied during the [N] startup by pressing the button.

• DPA Peer-to-peer (DP2P) communication protocol.

• New Random API variable.

 14.11 DPA 4.03

IQRF OS: 4.03D-08C8 (TR-7xD)

New features

• Newly documented command RAM Read Any.

Bug Fixes

• Fixed an issue introduced at DPA V4.02 when any of MemoryRead+1 FRC commands also
executed a DPA Request from bufferAUX (e.g. stored from the previous FRC Acknowledged
Broadcast).

 14.12 DPA 4.02

IQRF OS: 4.03D-08C8 (TR-7xD)

New features

• New FRC command Memory read 4 bytes.

Bug Fixes

• Fixed an issue when custom bonding of the STD [N] implemented in the Reset event did not store
valid RF mode. Therefore the [N] did receive and transmit well.

 14.13 DPA 4.01

IQRF OS: 4.03D-08C8 (TR-7xD)

New features

• New command Test RF Signal.

Bug Fixes

• Fixed an issue when Remove bond did not call Disable Interrupts event. This might cause [N] not
to restart. [N] then had to be restarted by turning off and on.

• Fixed an issue when the HDLC UART interface packet receiver might get out of sync when the
HDLC Flag Sequence byte (0x7e) is not received. The receiver then had to be restarted by turning
the device off and on.

• Fixed an issue when the Autonetwork V2 did not unbond unresponsive [Ns] at the end of each
wave. It might result in duplicate addresses in the network.

 14.14 DPA 4.00

IQRF OS: 4.03D-08C8 (TR-7xD)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 141

Changes and enhancements

• DPA plug-ins for [C] support both STD+LP and STD networks, thus the DPA Plug-in filename
format was changed and the former specific STD and LP plug-ins for [C] are not released
anymore. New configuration bit.7 at TR Configuration byte index 0x05 selects the network type the
[C] controls.

• DPA plug-ins for [Ns] support either both or just STD+LP networks, thus the DPA Plug-in filename
format was changed.

• When the [N] supports SPI or UART Interface then neither SPI nor UART embedded peripherals
are supported.

• Supported Interface type at [N] is controlled by the upload of the appropriate DPA Plug-in,
therefore bit.1 at TR Configuration byte index 0x05 was discarded.

• Remote bonding support removal (Autonetwork takes over) results in discarding:
o Commands: CMD_COORDINATOR_READ_REMOTELY_BONDED_MID,

CMD_COORDINATOR_CLEAR_REMOTELY_BONDED_MID,
CMD_COORDINATOR_ENABLE_REMOTE_BONDING, CMD_NODE_READ_REMOTELY_BONDED_MID,
CMD_NODE_CLEAR_REMOTELY_BONDED_MID, and CMD_NODE_ENABLE_REMOTE_BONDING.

o DPA API variables: ProvidesRemoteBonding, and RemoteBondingCount.

o Embedded FRCs: FRC_Prebonding.

o Events: DpaEvent_AuthorizePreBonding.

• Parameter BondingMask at Bond Node command renamed to BondingTestRetries with the same
meaning as in Smart Connect.

• FRC peripheral is always enabled at [C] and disabled at [N] respectively regardless of the
configuration settings.

• The Remove bond command also restarts the [N] (except in DSM).

• The meaning of the DPA value bit.7 was changed.

• Discarded commands: CMD_COORDINATOR_REBOND_NODE, CMD_COORDINATOR_DISCOVERY_DATA,
and CMD_NODE_REMOVE_BOND_ADDRESS.

• When the [N] is successfully bonded using the button then the green LED is lit for 0.5 seconds but
does not wait for the button to be released anymore.

New features

• A new bit at Peripheral enumeration flags indicates the actual IQMESH network type.

• FRC command FRC_Ping replaces the value of the former FRC_Prebonding command.

• FRC command FRC_SupplyVoltage.

 14.15 DPA 3.04

IQRF OS: 4.03D-08C8 (TR-7xD)

Bug Fixes

• Fixed an issue when the Send and Send Selective commands of the FRC peripheral passed only
20 bytes of the UserData parameter. The bug was introduced with DPA 3.03.

 14.16 DPA 3.03

IQRF OS: 4.03D-08C8 (TR-7xD)

• Please see also Migration Notes.

Changes and enhancements

• Command OS Read reads IBK (Individual Bonding Key) too.

• Default bonding supports Smart Connect.

• The default bonding sleep timeout was extended to 5 hours.

• Read TR Configuration does not XOR values by 0x34 anymore.

• Write TR Configuration does not require checksum to be precomputed anymore.

• EEEPROM Extended Write can write over two adjacent 64-byte pages of the EEPROM chip at once.

• Command Discovery data is marked as obsolete and will be removed in a future release. Use more
powerful EEEPROM Extended Read instead.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 142

• Peripheral PWM, which was formerly available only in the Demo version, was finally depreciated.

• Discarded command CMD_LED_GET at LED peripherals.

• DPA Service Mode (DSM) operates with a fixed RX filter of value 5 to be independent of potentially
too high filter value at TR Configuration. DSM keeps using full TX power of value 7.

• The meaning of EEEPROM information enumeration parameters changed.

• Timeslot lengths updated for the current IQRF OS version. LP DPA got faster.

• Peripheral RAM buffer PeripheralRam is now allocated at the fixed address at bank #12 for sure.

• Compiler CC5X V3.7A is required for compiling the Custom DPA Handlers.

New features

• New command Smart Connect.

• New command Validate bonds.

• New command LED Flashing.

• New command Set MID.

• 4 bytes FRC.

• Two new embedded FRC commands for the Autonetwork V2. Please see Prebonded alive and
PrebondedMemoryReadPlus1.

• New embedded FRC command Test RF Signal.

• New API variable BondingSleepCountdown.

Bug Fixes

• Fixed an issue when the DPA for Node without DPA interface support at standard RF mode
(HWP-Node-STD-7xD-V302-171116.iqrf or HWP-Node-STD-7xD-V301-170814.iqrf) did not
initialize enabled SPI Peripheral.
→ The workaround was to call enableSPI() at DpaEvent_Init event.

• Fixed an issue when the DPA for Coordinator with a UART interface (HWP-Coordinator-STD-UART-
7xD-V302-171116.iqrf or HWP-Coordinator-LP-UART-7xD-V302-171116.iqrf) did not shutdown the
UART interface before Discovery, Reset, Restart, Run RFPGM, and LoadCode commands are
executed. This might cause malfunctioning in case of discovery or missing DPA Response in other
cases.
→ The workaround was to enable the Node interface at the TR Configuration although the device
is the Coordinator.

 14.17 DPA 3.02

IQRF OS: 4.02D-08B8 (TR-7xD)

Changes and enhancements

• Autoexec and IO Setup can use embedded peripherals that are not enabled in the TR Configuration.

New features

• New API variable RxFilter.

Bug Fixes

• Fixed an issue when during precise sleep the drawn current jumps by a few µA under certain GPIO
settings.

• Fixes and enhancements at CustomDpaHandler-AutoNetwork example.

 14.18 DPA 3.01

IQRF OS: 4.01D-08B7 (TR-7xD)

• Generated DPA version for Node at STD mode without Interface support. The name is "HWP-
Node-STD-7xD-Vabc-yymmdd.iqrf".

Changes and enhancements

• With the introduction of standard IQRF peripherals, former Standard peripherals have been
renamed to Embedded peripherals. Field StandardPer has been renamed to EmbeddedPers.

• DpaApiRfTxDpaPacket allows specifying a synchronous or asynchronous message.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 143

• ReceiveDpaRequest is not raised at Remove bond command.

• Response values of Read Temperature have been changed from unsigned to signed integers.

• DpaApiLocalRequest can send a request to the peripheral that is not enabled in the TR
Configuration.

• PIC HW UART peripheral interrupts can be handled at the Custom DPA Handler Interrupt event
unless the DPA UART peripheral is not open or DPA UART Interface is not used. Formerly they
could be handled if the DPA UART peripheral was not enabled in the TR Configuration or DPA
UART Interface was not used.

• Both UART Peripheral and Interface now support 230 400 Baud rate.

• A flag indicating a missing Custom DPA Handler was documented at OS Read command.

• A flag indicating that no Interface is supported was introduced at OS Read command.

• The word “General” removed from the DPA plug-in filename.

New features

• Event BondingButton allows a simple redefining of the default (un)bonding button thus saving a
considerable amount (around 90 instructions) of the handler code.

• Command Selective Batch allows selecting Nodes that will execute a broadcast request.

• Command Clear & Write & Read that unlike Write & Read clears UART RX buffer at first.

• Macro IfDpaEnumPeripherals_Else_PeripheralInfo_Else_PeripheralRequest() compared to
IsDpaEnumPeripheralsRequest() and IsDpaPeripheralInfoRequest() saves some handler code (up
to 10 instructions).

• Both FSR0 and FSR1 point to the message PData at the Custom DPA Handler entry.

 14.19 DPA 3.00

IQRF OS: 4.00D-08B1 (TR-7xD)

• TR-5xD devices are not supported anymore.

• The demo DPA version is not released anymore.

• DPA for the [CN] device is not released anymore.

Changes and enhancements

• User peripherals do not have to be numbered consequently starting from number 0x20.

• Enumeration response extended by a bitmap specifying implemented user peripheral.

• The interval of allowed PCMD values extended.

• Bonding UserData extended from 2 to 4 bytes at Enable remote bonding and Read remotely bonded
module ID.

• Remote bonding can bond up to 7 Nodes. See also Read remotely bonded module ID and
RemoteBondingCount.

• MID at Authorize bond extended from 2 to 4 bytes to avoid MID collisions.

• The discovery data address extended to 2 bytes and not multiplied by 16 anymore.

• The meaning of Par1 changed at EEEPROM enumeration.

• The unlimited address range of Extended Read.

• The address range of Extended Write limited to the lower 16 kB of EEEPROM only.

• Changed addresses of Autoexec and IO Setup at EEEPROM.

• IO Setup size extended from 32 to 64 bytes.

• Send FRC returns data from one more extra Node in the case of 1B and 2B FRC commands.

• Slot timing updated according to IQRF OS 4.00.

• Backup and Restore data length increased and AES-128 encrypted using an access password.

• DSM protected and encrypted by an AES-128 using an access password.

• FRC command value is accessible at _PCMD variable.

• CustomDpaHandler-ChangeIQRFOS.iqrf HWPID changed.

• The response that is sent when the device is started is marked by the new asynchronous flag.

• Usage of Write TR Configuration and Write TR Configuration byte inside Batch is not limited.

• Command OS Read additionally returns the shortest and the longest timeslot length.

• New parameter at DpaApiSendToIFaceMaster to specify asynchronous packets.

• Discarded commands:

• CMD_OS_SET_MID (irrelevant at IQRF OS 4.00)

• CMD_OS_SET_USEC (unused at current DSM)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 144

• CMD_EEEPROM_READ (use Extended Read instead)

• CMD_EEEPROM_WRITE (use Extended Write instead)

New features

• Command Set Security.

• Deep sleep feature at Sleep.

• DPA API function DpaApiSetRfDefaults.

• IQRF OS Change process can also change the DPA version at the same time.

 14.20 DPA 2.28

IQRF OS: 3.08D-0858/3.08D-0879 (TR-5xD/TR-7xD)

• This is the ending major DPA release for TR-5xD.

Changes and enhancements

• The maximum data block length for EEPROM peripheral extended from 32 to 55 bytes.

Bug Fixes

• Fixed an issue when more LP mode [N] devices restarted at the same time caused some of them
to delay their start by approximately 2 seconds.

• Fixed an issue when the demo DPA version [C] device responded with ERROR_NADR when the
broadcast address or the temporary address was specified in the request. The same applies to the
demo version of the [CN] device at Bridge command.

• Fixed an issue when the PWM peripheral or the corresponding CustomDpaHandler-
UserPeripheral-PWM.c example generated unwanted output glitch when PWM parameters were
set.

• Improved Sleep accuracy at TR-7xD for times above 2 s.

 14.21 DPA 2.27

IQRF OS: 3.08D-0858/3.08D-0879 (TR-5xD/TR-7xD)

Changes and enhancements

• Parameter Mask added to Write TR Configuration byte command.

• Peripheral OS is always enabled regardless of the configuration settings.

• Change of the RF signal filter value at TR Configuration takes effect after the device is restarted.

New features

• Write TR Configuration byte command can write multiple values including RFPGM settings.

 14.22 DPA 2.26

IQRF OS: 3.08D-0858/3.08D-0879 (TR-5xD/TR-7xD)

Changes and enhancements

• The size of both read and write peripheral UART Write & Read circular buffers extended from 32
to 64 bytes. A maximum number of bytes transferred by this command extended from 32 to 55
bytes.

• Initial checksum value at LoadCode when loading Custom DPA Handler changed from 0x0000 to
0x0001.

• If Custom DPA Handler is enabled at the TR Configuration but it is missing (not loaded in the
Flash memory) then a response return code ERROR_MISSING_CUSTOM_DPA_HANDLER is
not returned anymore when explicitly a peripheral OS is used. The request to the OS peripheral is
executed.

• Set FRC Params now returns previous values.

• Read OS now returns an extra byte reserved for future use.

New features

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 145

• Command LoadCode also supports loading code from IQRF plug-ins (.iqrf files). It allows e.g.
upgrading the DPA version over the network.

• Implemented CustomDpaHandler-ChangeIQRFOS.iqrf handler for changing the IQRF OS version
over the network.

• Autonetwork examples support LP mode.

Bug fixes

• Fixed an issue when new commands Extended Read and Extended Write undesirably modified
first 3 bytes of peripheral RAM memory space.

• Fixed an issue when the UART interface might receive a frame missing starting HDLC flag
Sequence byte 0x7e.

 14.23 DPA 2.24

IQRF OS: 3.07D-0852/3.07D-0870 (TR-5xD/TR-7xD)

Changes and enhancements

• Command Discovery data returns 48 bytes instead of formerly 16 bytes.

New features

• New commands Extended Read and Extended Write to access 16 kB of TR-7xD external
EEPROM memory.

• New command LoadCode for loading Custom DPA Handler code from external EEPROM into
MCU Flash memory.

Bug fixes

• Fixed an issue at TR-7x devices when during precise sleep the current drawn exceeds approx. 500
µA.

• Fixed an issue when released DPA 2.20+ plug-ins for TR-7xD devices overwrite tailing (above size
736) instructions of Custom DPA Handler.
→ Workaround - upload Custom DPA Handler after DPA plug-in, but not in the inverse order.

 14.24 DPA 2.23

IQRF OS: 3.07D-0852/3.07D-0870 (TR-5xD/TR-7xD)

Changes and enhancements

• Header files DPA.h can be compiled using the GCC compiler in order to help to interface with

other frameworks.

Bug fixes

• Fixed an issue introduced at DPA V2.22 when commands Set FRC Params and UART Write &
Read accept only no data.

 14.25 DPA 2.22

IQRF OS: 3.07D-0852/3.07D-0870 (TR-5xD/TR-7xD)

New features

• New command Write TR Configuration byte.

Bug fixes

• Minimum required IQRF OS build number checked by OS Read for TR-7x devices corrected.

 14.26 DPA 2.21

IQRF OS: 3.07D-0852/3.07D-0870 (TR-5xD/TR-7xD)

https://doc.iqrf.org/DpaTechGuide/430/examples/DPA.h.html

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 146

Changes and enhancements

• IQRF button used e.g. for bonding redefined to GPIO pin PORTB.4 only.

New features

• Sleep command optionally supports 32.768 ms time unit.

• LpRxPinTerminate API variable allows interrupting LP packet reception by a pin change.

Bug fixes

• Fixed an issue introduced at DPA 2.20 when Batch, Autoexec or IO Setup execution of the
embedded request is discontinued when one request does not match HWPID.

 14.27 DPA 2.20

IQRF OS: 3.07D-0852/3.07D-0870 (TR-5xD/TR-7xD)

• Support of TR-7xD devices.

Changes and enhancements

• TR-7xD Custom DPA handler Flash memory block extended to 864 instructions.

• [N] and [CN] devices send “Reset” DPA Request when started the same way the [C] already did.

• Read TR request configuration documented and returned checksum updated.

• Bridge response improved.

• DPA API variable LP_XLP_toutRF renamed to LPtoutRF

• EEEPROM peripheral allows reading and writing of a variable number of bytes.

New features

• 2 byte FRC commands.

• Selective FRC.

• Peer2peer packets.

• Alternative DSM channel.

• New commands Restart, Send Selective, Set FRC Params.

• New predefined FRC commands Memory read, Memory read plus 1, FRC response time.

• New events FrcResponseTime, UserDpaValue, AuthorizePreBonding, PeerToPeer.

Bug fixes

• Fixed an issue when a precise sleep calibration caused exceptionally a shorter time at the very
next sleep session.

 14.28 DPA 2.13

IQRF OS: 3.06D-0707 (TR-5xD)

Bug fixes

• Fixed an issue when a precise sleep calibration (a part of OS/Sleep request) caused exceptionally
an endless sleep of the device.

 14.29 DPA 2.12

IQRF OS: 3.06D-0707 (TR-5xD)

Bug fixes

• Fixed an issue when PWM peripheral disabled [N] and [CN] devices until (WDT)reset is executed.

• Fixed an issue when DpaEvent_Interrupt executed clrdwt() as the 1st statement at the Custom
DPA Handler (i.e. obligatory Handler presence mark) thus causing WDT being cleared every time
when an interrupt was raised.

 14.30 DPA 2.11

IQRF OS: 3.06D-0707 (TR-5xD)

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 147

Bug fixes

• Fixed an issue when a module startup time was significantly delayed in case of a strong service
channel jamming.

• DpaTicks variable "frequency" fixed, it was slower by +0.8 %.

 14.31 DPA 2.10

IQRF OS: 3.06D-0707 (TR-5xD)

Changes and enhancements

• Foursome parameters NAdr, PNum, PCmd capitalized to NADR, PNUM, and PCMD.

• Foursome parameter HwProfile renamed to HWPID.

• Updated timing recommendation, see DPA Confirmation.

• DpaEvent_None event renamed to DpaEvent_DpaRequest.

• CMD_OS_SLEEP - Control bit 0 and bit 3 functionality enhanced and changed.

• Brown-out Reset disabled after the device starts.

• Extra 32 bytes added to both EEPROM and EEEPROM peripherals.

• IQRF OS variable DataOutBeforeResponseFRC type changed from uns16 to uns8[30].

• System DPA value bit 0 returns value of DSMactivated variable.

• DpaApiSendToIFaceMaster has a new parameter.

• User DPA Value is stored at the UserDpaValue variable. It is not transferred via the userReg0
variable at the Idle event only anymore.

• Set Hops does not limit the number of hops to the VRN of the addressed and discovered Node
anymore.

• UART interface uses more sophisticated 8-bit CRC instead of simple XOR checksum to protect
data.

• DpaApiSendToIFaceMaster works even when IFaceMasterNotConnected is set in the case when
the UART interface is used.

• DpaApiRfTxDpaPacketCoordinator now returns a number of hops to deliver DPA Request back to
the Coordinator.

New features

• Full low-power (LP) support (i.e. bonding, Discovery, and FRC).

• FRC Acknowledged Broadcast.

• Custom DPA Handler auto-detection.

• IO Setup (early Autoexec).

• Extra 32 bytes memory space added to EEPROM and external EEPROM peripherals.

Bug fixes

• Fixed an issue when NADR did not contain original sender address at (1.) DpaEvent_Notification
event at the [C] device or (2.) inside the Batch request.

• Fixed an issue when NADR did not contain recipient address at DpaEvent_DpaRequest event
when DPA Request was part of Batch (or Autoexec) request.

• Fixed an issue with the [C] device where the asynchronous or local requests might not be
executed (because of internal HWPID variable was not initialized) until enumeration of [C]
peripherals was performed.

• Fixed an issue where at CMD_OS_SLEEP wake up on pin did not work when the calibration was
initiated too (always the 1st time the CMD_OS_SLEEP was requested).

• Fixed an issue when using CMD_IO_SET as a part of Autoexec or CMD_OS_BATCH might cause
device malfunction.

• Flushing internal buffers of SPI or UART before calling IQRF OS functions that use shared
bufferCOM or when the device is going to sleep or reset.

• Improved disabling/enabling SPI/UART peripherals/interfaces before calling IQRF OS functions
that use shared bufferCOM or when the device is going to sleep or reset.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 148

 14.32 DPA 2.01

IQRF OS: 3.05D-06B5 (TR-5xD)

Bug fixes

• Fixed an issue of DpaApiLocalRequest() API call to allow Custom DPA Handler Interrupt event
(now only this event is enabled during the call) to be raised. Missing Interrupt event might cause
deadlock resulting in WDT reset.

• Fixed an issue where custom peripheral did not return an error (PNum was not set to
PNUM_ERROR_FLAG) at [C] and [CN] devices.

 14.33 DPA 2.00

IQRF OS: 3.05D-06B5 (TR-5xD)

Changes and enhancements

• Every DPA Request/Response contains a new 2B HWPID parameter, see General message
parameters.

• Changes of parameters or response results of the following commands, services or API:
CMD_COORDINATOR_DISCOVERY, CMD_COORDINATOR_BACKUP, CMD_COORDINATOR_RESTORE,
CMD_NODE_ENABLE_REMOTE_BONDING, CMD_NODE_READ, CMD_OS_READ_CFG, CMD_OS_READ,
CMD_OS_BATCH, CMD_UART_OPEN, Peripheral enumeration, Autoexec, DpaApiRfTxDpaPacket.

• The [C] device sends a „Reset“ message upon startup, see Device Startup.

• Notification event called even after read-only DPA Request.

• Custom DPA Handler location and reserved Flash memory size changed and events renumbered.
Custom DPA Handler must be recompiled and uploaded.

• Custom DPA Handler must use case DpaEvent_None: instead of the default:

• Event DpaEvent_Async renamed to DpaEvent_AfterRouting.

• A Node can address the Coordinator by COORDINATOR_ADDRESS or LOCAL_ADDRESS. See
DpaApiRfTxDpaPacket.

• Changed LED indication style of the forbidden address upon Node startup at demo mode.

• Embedded LED peripherals are not limited to the demo version only.

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 149

 15 Document Revisions
221019 DPA v4.30 release
221005 DPA v4.18 release
220224 DPA v4.17 release
210818 DPA v4.16 release
200903 DPA v4.15 release
200403 DPA v4.14 release
200227 DPA v4.13 release
200109 DPA v4.12 release
191211 DPA v4.11 release
191009 DPA v4.10 release
190612 DPA v4.03 release
190603 DPA v4.02 release
190307 DPA v4.01 release
190110 DPA v4.00 release
181130 DPA v3.04 release
181025 DPA v3.03 release
171116 DPA v3.02 release
170814 DPA v3.01 release
170314 DPA v3.00 release
160912 DPA v2.28 release
160414 DPA v2.27 release
160303 DPA v2.26 release
151201 DPA v2.24 release
151023 DPA v2.23 release
151008 DPA v2.22 release
150903 DPA v2.21 release
150805 DPA v2.20 release
150130 DPA v2.13 release
150115 DPA v2.12 release
141119 DPA v2.11 release
141105 DPA v2.10 release
130602 DPA v2.01 release
130512 DPA v2.00 release

 16 Acknowledgement
This project has been made possible with a government grant by means of the Ministry of Industry and
Trade of Czech Republic in the TRIO program.

https://doc.iqrf.org/DpaTechGuide/430
https://doc.iqrf.org/DpaTechGuide/418
https://doc.iqrf.org/DpaTechGuide/417
https://doc.iqrf.org/DpaTechGuide/416
https://doc.iqrf.org/DpaTechGuide/415
https://doc.iqrf.org/DpaTechGuide/414
https://doc.iqrf.org/DpaTechGuide/413
https://doc.iqrf.org/DpaTechGuide/412
https://doc.iqrf.org/DpaTechGuide/411
https://doc.iqrf.org/DpaTechGuide/410
https://doc.iqrf.org/DpaTechGuide/403
https://doc.iqrf.org/DpaTechGuide/402
https://doc.iqrf.org/DpaTechGuide/401
https://doc.iqrf.org/DpaTechGuide/400
https://doc.iqrf.org/DpaTechGuide/304
https://doc.iqrf.org/DpaTechGuide/303
https://doc.iqrf.org/DpaTechGuide/302
https://doc.iqrf.org/DpaTechGuide/301
https://doc.iqrf.org/DpaTechGuide/300
https://doc.iqrf.org/DpaTechGuide/228

 IQRF DPA

© 2013-2022 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA-Framework-430_221019 Page 150

 17 Sales and Service

Corporate office, technology and development
MICRORISC s.r.o.
Prumyslova 1275, 506 01 Jicin, Czech Republic, EU
Tel: +420 493 538 125, www.microrisc.com
E-mail (commercial matters): sales@microrisc.com

Support
www.iqrf.org
E-mail (technical matters): support@iqrf.org

Partners and distribution
www.iqrf.org/partners

Quality management
ISO 9001 : 2016 certified

Trademarks
The IQRF name and logo are registered trademarks of IQRF Tech s.r.o.
All other trademarks mentioned herein are a property of their respective owners.

Legal
All information contained in this publication is intended through suggestion only and may be superseded
by updates without prior notice. No representation or warranty is given and no liability is assumed by
IQRF Tech s.r.o. and/or MICRORISC s.r.o. with respect to the accuracy or use of such information.
Without written permission, it is not allowed to copy or reproduce this information, even partially.
No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
The IQRF ® products utilize several patents (CZ, EU, US).

On-line support: support@iqrf.org

https://www.microrisc.com/en
mailto:sales@microrisc.com
https://www.iqrf.org/
mailto:support@iqrf.org
https://www.iqrf.org/partners
mailto:support@iqrf.org

	1 Introduction
	2 Basics
	2.1 Device types
	2.2 RF Devices and Networks
	2.2.1 Migration Notes from DPA 3.0x to DPA 4.xx

	2.3 Interfaces
	2.3.1 SPI
	2.3.2 UART
	2.3.3 Peripherals vs. Interfaces
	2.3.3.1 Peripherals
	2.3.3.2 Interface

	2.4 DPA Plug-in filename
	2.5 Message parameters
	2.6 DPA Messages
	2.6.1 DPA Request
	2.6.2 DPA Confirmation
	2.6.3 DPA Notification
	2.6.4 DPA Response
	2.6.5 Examples

	2.7 Device exploration
	2.7.1 Peripheral enumeration
	2.7.1.1 Source code support

	2.7.2 Get peripheral information
	2.7.2.1 Source code support

	2.7.3 Get information for more peripherals
	2.7.3.1 Source code support

	3 Peripherals
	3.1 Standard operations in general
	3.1.1 Writing to peripheral
	3.1.1.1 Source code support

	3.1.2 Reading from peripheral
	3.1.2.1 Source code support

	3.2 Coordinator
	3.2.1 Peripheral information
	3.2.2 Get addressing information
	3.2.2.1 Source code support

	3.2.3 Get discovered Nodes
	3.2.4 Get bonded Nodes
	3.2.4.1 Source code support

	3.2.5 Clear all bonds
	3.2.6 Bond Node
	3.2.6.1 Source code support

	3.2.7 Remove bonded Node
	3.2.7.1 Source code support

	3.2.8 Discovery
	3.2.8.1 Source code support

	3.2.9 Set DPA Param
	3.2.9.1 Source code support

	3.2.10 Set Hops
	3.2.10.1 Source code support

	3.2.11 Backup
	3.2.11.1 Source code support

	3.2.12 Restore
	3.2.12.1 Source code support

	3.2.13 Authorize bond
	3.2.13.1 Source code support

	3.2.14 Smart Connect
	3.2.14.1 Source code support

	3.2.15 Set MID
	3.2.15.1 Source code support

	3.3 Node
	3.3.1 Peripheral information
	3.3.2 Read
	3.3.2.1 Source code support

	3.3.3 Remove bond
	3.3.4 Backup
	3.3.5 Restore
	3.3.6 Validate bonds
	3.3.6.1 Source code support

	3.4 OS
	3.4.1 Peripheral information
	3.4.2 Read
	3.4.2.1 Source code support

	3.4.3 Reset
	3.4.4 Restart
	3.4.5 Read TR Configuration
	3.4.5.1 Source code support

	3.4.6 Write TR Configuration
	3.4.6.1 Source code support

	3.4.7 Write TR Configuration byte
	3.4.7.1 Source code support

	3.4.8 Run RFPGM
	3.4.9 Sleep
	3.4.9.1 Source code support

	3.4.10 Set Security
	3.4.10.1 Source code support

	3.4.11 Batch
	3.4.12 Selective Batch
	3.4.12.1 Source code support

	3.4.13 LoadCode
	3.4.13.1 Source code support

	3.4.14 Test RF Signal
	3.4.14.1 Source code support

	3.4.15 Factory Settings
	3.4.16 Indicate
	3.4.16.1 Source code support

	3.5 EEPROM
	3.5.1 Peripheral information
	3.5.2 Read
	3.5.2.1 Source code support

	3.5.3 Write
	3.5.3.1 Source code support

	3.6 EEEPROM
	3.6.1 Peripheral information
	3.6.2 Extended Read
	3.6.2.1 Source code support

	3.6.3 Extended Write
	3.6.3.1 Source code support

	3.7 RAM
	3.7.1 Peripheral information
	3.7.2 Read & Write
	3.7.2.1 Source code support

	3.7.3 Read Any

	3.8 SPI (Slave)
	3.9 LED
	3.9.1 Peripheral information
	3.9.2 Set
	3.9.3 Pulse
	3.9.4 Flashing

	3.10 IO
	3.10.1 Peripheral information
	3.10.2 Direction
	3.10.2.1 Source code support

	3.10.3 Set
	3.10.3.1 Source code support

	3.10.4 Get

	3.11 Thermometer
	3.11.1 Peripheral information
	3.11.2 Read
	3.11.2.1 Source code support

	3.12 PWM
	3.13 UART
	3.13.1 Peripheral information
	3.13.2 Open
	3.13.2.1 Source code support

	3.13.3 Close
	3.13.4 Write & Read
	3.13.4.1 Source code support

	3.13.5 Clear & Write & Read

	3.14 FRC
	3.14.1 Peripheral information
	3.14.2 Send
	3.14.2.1 Source code support

	3.14.3 Extra result
	3.14.4 Send Selective
	3.14.4.1 Source code support

	3.14.5 Set FRC Params
	3.14.5.1 Source code support

	3.14.6 Embedded FRC Commands
	3.14.6.1 Ping
	3.14.6.2 Acknowledged broadcast - bits
	3.14.6.3 Prebonded alive
	3.14.6.4 Supply voltage
	3.14.6.5 Prebonded memory compare
	3.14.6.6 Temperature
	3.14.6.7 Acknowledged broadcast - bytes
	3.14.6.8 Memory read
	3.14.6.9 Memory read plus 1
	3.14.6.10 FRC response time
	3.14.6.11 Test RF Signal
	3.14.6.12 Prebonded memory read plus 1
	3.14.6.13 Memory read 4 bytes

	4 TR Configuration
	5 Device Startup
	5.1 Button Handling and LED Indications
	5.1.1 RFPGM
	5.1.2 Node
	5.1.2.1 Bonded Node
	5.1.2.2 Unbonded Node

	5.1.3 Coordinator
	5.1.4 Custom DPA Handler State

	6 DPA Menu
	6.1 Menus
	6.1.1 DPA Menu ReadyToBond
	6.1.2 DPA Menu Online
	6.1.3 DPA Menu Beaming
	6.1.4 DPA Menu Standby

	6.2 DPA Menu Content
	6.2.1 Bond Request
	6.2.2 Beaming
	6.2.3 Connectivity Check
	6.2.4 Exit Standby
	6.2.5 State Indication
	6.2.6 User1 and User2
	6.2.7 Standby
	6.2.8 Reset
	6.2.9 Unbond + Restart
	6.2.10 Unbond + Factory Settings + Restart

	7 Autoexec
	8 IO Setup
	9 Custom DPA Handler
	9.1 Handler Example
	9.2 Events Flow
	9.2.1 Coordinator
	9.2.2 Node
	9.2.3 General events
	9.2.3.1 Interrupt
	9.2.3.2 Disable Interrupts
	9.2.3.3 Sleep Events
	9.2.3.4 Menu Events

	9.3 Events
	9.3.1 Interrupt
	9.3.2 Idle
	9.3.3 Init
	9.3.4 Notification
	9.3.5 AfterRouting
	9.3.6 BeforeSleep
	9.3.7 AfterSleep
	9.3.8 Reset
	9.3.9 Disable Interrupts
	9.3.10 FrcValue
	9.3.11 FrcResponseTime
	9.3.12 ReceiveDpaResponse
	9.3.13 IFaceReceive
	9.3.14 ReceiveDpaRequest
	9.3.15 BeforeSendingDpaResponse
	9.3.16 PeerToPeer
	9.3.17 UserDpaValue
	9.3.18 BondingButton
	9.3.19 Indicate
	9.3.20 VerifyLocalFrc
	9.3.21 MenuActivated
	9.3.22 MenuItemSelected
	9.3.23 MenuItemFinalize
	9.3.24 DPA Request
	9.3.24.1 Enumerate Peripherals
	9.3.24.2 Get Peripheral Info
	9.3.24.3 Handle Peripheral Request
	9.3.24.4 Alternative Event Processing

	9.4 DPA API
	9.4.1 DpaApiRfTxDpaPacket
	9.4.2 DpaApiReadConfigByte
	9.4.3 DpaApiSendToIFaceMaster
	9.4.4 DpaApiRfTxDpaPacketCoordinator
	9.4.5 DpaApiLocalRequest
	9.4.6 DpaApiReturnPeripheralError
	9.4.7 DpaApiSetRfDefaults
	9.4.8 DpaApiLocalFrc
	9.4.9 DpaApiCrc8
	9.4.1 DpaApiAggregateFrc
	9.4.2 DpaApiSetOTK
	9.4.3 DpaApiSleep
	9.4.4 DpaApiAfterSleep
	9.4.5 DpaApiI2Cinit
	9.4.6 DpaApiI2Cstart
	9.4.7 DpaApiI2Cwrite
	9.4.8 DpaApiI2Cread
	9.4.9 DpaApiI2Cstop
	9.4.10 DpaApiI2CwaitForACK
	9.4.11 DpaApiI2Cshutdown
	9.4.12 DpaApiI2CwaitForIdle
	9.4.13 DpaApiRandom
	9.4.14 DpaApiMenu
	9.4.15 DpaApiMenuIndicateResult
	9.4.16 DpaApiMenuExecute

	9.5 DPA API Variables
	9.5.1 bit IFaceMasterNotConnected
	9.5.2 bit NodeWasBonded
	9.5.3 bit EnableIFaceNotificationOnRead
	9.5.4 uns16 DpaTicks
	9.5.5 uns8 LPtoutRF
	9.5.6 uns8 ResetType
	9.5.7 bit DSMactivated
	9.5.8 uns8 UserDpaValue
	9.5.9 uns8 NetDepth
	9.5.10 bit LpRxPinTerminate
	9.5.11 uns8 RxFilter
	9.5.12 uns16 BondingSleepCountdown
	9.5.13 uns16 Random
	9.5.14 bit AsyncReqAtCoordinator
	9.5.15 bit NonroutedRfTxDpaPacket
	9.5.16 uns8 DpaValue
	9.5.17 uns8 I2Ctimeout
	9.5.18 bit I2CwasTimeout
	9.5.19 bit FirstDpaApiSleep

	9.6 Examples
	9.6.1 Bonding
	9.6.2 Coordinator-FRCandSleep
	9.6.3 FRC-Minimalistic
	9.6.4 LED-MemoryMapping
	9.6.5 PeripheralMemoryMapping
	9.6.6 UserPeripheral-18B20
	9.6.7 UserPeripheral-18B20-Idle
	9.6.8 UserPeripheral-ADC
	9.6.9 UserPeripheral-HW-UART
	9.6.10 UserPeripheral-i2c
	9.6.11 UserPeripheral-PWM
	9.6.12 UserPeripheral-SPImaster

	9.7 Migration Notes to DPA 3.03

	10 DPA Peer-to-Peer
	10.1 DP2P Request
	10.2 DP2P Response Handshake
	10.2.1 DP2P Invite
	10.2.2 DP2P Confirm
	10.2.3 DP2P Response

	11 DPA in Practice
	11.1 Network Deployment
	11.2 Over The Air (OTA) upgrade of IQRF OS and DPA
	11.3 Code Upload
	11.3.1 Storing Code at External EEPROM
	11.3.2 Executing Code Upload
	11.3.3 Executing IQRF OS Change

	12 Constants
	12.1 Peripheral Numbers
	12.2 Response Codes
	12.3 DPA Commands
	12.4 Peripheral Types
	12.5 Custom DPA Handler Events
	12.6 Extended Peripheral Characteristic
	12.7 HW Profile IDs
	12.8 Baud rates
	12.9 User FRC Codes

	13 Appendix
	13.1 CRC Calculation
	13.1.1 CC5X Compiler
	13.1.2 C#
	13.1.3 Java
	13.1.4 Pascal/Delphi

	13.2 One’s Complement Fletcher-16 Checksum Calculation
	13.2.1 CC5X Compiler
	13.2.2 C#

	13.3 Custom DPA Handler Code at .hex File
	13.4 IQRF OS Change
	13.4.1 IQRF OS Change File

	13.5 Code Optimization
	13.5.1 W as a temporary variable
	13.5.2 Variable access reorder
	13.5.3 Variable access decomposition
	13.5.4 Explicit MOVLB omitting
	13.5.5 Direct function parameter usage
	13.5.6 Avoiding else
	13.5.7 Switch instead of if
	13.5.8 Function call before return
	13.5.9 Using goto to avoid redundant code
	13.5.10 Avoiding readFromRAM and getINDFx
	13.5.11 Advanced C-compiler optimized instructions
	13.5.12 do {} while () is preferred
	13.5.13 Use DECFSZ/INCFSZ
	13.5.14 Widening function parameter
	13.5.15 Carry as a variable
	13.5.16 Limiting variable scope
	13.5.17 Using IQRF variables
	13.5.18 Parameter mapped to W
	13.5.19 Pointer parameters mapped to FSRx
	13.5.20 FSRx as a 16-bit variable
	13.5.21 Using FSRx to copy between buffers and variables
	13.5.22 Accessing 16-bit MCU registers
	13.5.23 Using IQRF OS offset and limit variables
	13.5.24 Effective is not always efficient
	13.5.25 The assignment also has a value
	13.5.26 Interval detection optimization
	13.5.27 Optimized constants
	13.5.28 Equality result
	13.5.29 One instruction at the if branch
	13.5.30 Utilization of the preloaded W
	13.5.31 == 1 is more efficient than != 1
	13.5.32 == 0xFF is more efficient than != 0xFF
	13.5.33 Expression modification
	13.5.34 Computed goto with a table limit
	13.5.35 Default is first at switch
	13.5.36 Better to return from than after the loop
	13.5.37 Modification instead of storing the value
	13.5.38 Assignment compares to 0
	13.5.39 End condition of the 16-bit loop variable
	13.5.40 Shift for a smart comparison
	13.5.41 Optimized return TRUE/FALSE
	13.5.42 Avoiding MOVLP #1
	13.5.43 Avoiding MOVLP #2
	13.5.44 Setting zeroed variables
	13.5.45 Compare to zero is more efficient
	13.5.46 setFSR01
	13.5.47 Pointer arithmetic
	13.5.48 Circular buffer index increment

	14 DPA Release Notes
	14.1 DPA 4.30
	14.2 DPA 4.18
	14.3 DPA 4.17
	14.4 DPA 4.16
	14.5 DPA 4.15
	14.6 DPA 4.14
	14.7 DPA 4.13
	14.8 DPA 4.12
	14.9 DPA 4.11
	14.10 DPA 4.10
	14.11 DPA 4.03
	14.12 DPA 4.02
	14.13 DPA 4.01
	14.14 DPA 4.00
	14.15 DPA 3.04
	14.16 DPA 3.03
	14.17 DPA 3.02
	14.18 DPA 3.01
	14.19 DPA 3.00
	14.20 DPA 2.28
	14.21 DPA 2.27
	14.22 DPA 2.26
	14.23 DPA 2.24
	14.24 DPA 2.23
	14.25 DPA 2.22
	14.26 DPA 2.21
	14.27 DPA 2.20
	14.28 DPA 2.13
	14.29 DPA 2.12
	14.30 DPA 2.11
	14.31 DPA 2.10
	14.32 DPA 2.01
	14.33 DPA 2.00

	15 Document Revisions
	16 Acknowledgement
	17 Sales and Service

